201 research outputs found

    Evaluating the Accuracy of Bluetooth-Based Travel Time on Arterial Roads: A Case Study of Perth, Western Australia

    Get PDF
    Bluetooth (BT) time-stamped media access control (MAC) address data have been used for traffic studies worldwide. Although Bluetooth (BT) technology has been widely recognised as an effective, low-cost traffic data source in freeway traffic contexts, it is still unclear whether BT technology can provide accurate travel time (TT) information in complex urban traffic environments. Therefore, this empirical study aims to systematically evaluate the accuracy of BT travel time estimates in urban arterial contexts. There are two major hurdles to deriving accurate TT information for arterial roads: the multiple detection problem and noise in BT estimates. To date, they have not been fully investigated, nor have well-accepted solutions been found. Using approximately two million records of BT time-stamped MAC address data from twenty weekdays, this study uses five different BT TT-matching methods to investigate and quantify the impact of multiple detection problems and the noise in BT TT estimates on the accuracy of average BT travel times. Our work shows that accurate Bluetooth-based travel time information on signalised arterial roads can be derived if an appropriate matching method can be selected to smooth out the remaining noise in the filtered travel time estimates. Overall, average-to-average and last-to-last matching methods are best for long (>1 km) and short (≤1 km) signalised arterial road segments, respectively. Furthermore, our results show that the differences between BT and ground truth average TTs or speeds are systematic, and adding a calibration is a pragmatic method to correct inaccurate BT average TTs or speeds. The results of this research can help researchers and road operators to better understand BT technology for TT analysis and consequently to optimise the deployment location and configuration of BT MAC address scanners

    Towards autonomous system: flexible modular production system enhanced with large language model agents

    Full text link
    In this paper, we present a novel framework that combines large language models (LLMs), digital twins and industrial automation system to enable intelligent planning and control of production processes. Our approach involves developing a digital twin system that contains descriptive information about the production and retrofitting the automation system to offer unified interfaces of fine-granular functionalities or skills executable by automation components or modules. Subsequently, LLM-Agents are designed to interpret descriptive information in the digital twins and control the physical system through RESTful interfaces. These LLM-Agents serve as intelligent agents within an automation system, enabling autonomous planning and control of flexible production. Given a task instruction as input, the LLM-agents orchestrate a sequence of atomic functionalities and skills to accomplish the task. We demonstrate how our implemented prototype can handle un-predefined tasks, plan a production process, and execute the operations. This research highlights the potential of integrating LLMs into industrial automation systems for more agile, flexible, and adaptive production processes, while also underscoring the critical insights and limitations for future work

    Robust saliency detection via regularized random walks ranking

    Get PDF
    In the field of saliency detection, many graph-based algorithms heavily depend on the accuracy of the pre-processed superpixel segmentation, which leads to significant sacrifice of detail information from the input image. In this paper, we propose a novel bottom-up saliency detection approach that takes advantage of both region-based features and image details. To provide more accurate saliency estimations, we first optimize the image boundary selection by the proposed erroneous boundary removal. By taking the image details and region-based estimations into account, we then propose the regularized random walks ranking to formulate pixel-wised saliency maps from the superpixel-based background and foreground saliency estimations. Experiment results on two public datasets indicate the significantly improved accuracy and robustness of the proposed algorithm in comparison with 12 state-of-the-art saliency detection approaches

    A note on additive complements of the squares

    Full text link
    Let S={12,22,32,...}\mathcal{S}=\{1^2,2^2,3^2,...\} be the set of squares and W={wn}n=1N\mathcal{W}=\{w_n\}_{n=1}^{\infty} \subset \mathbb{N} be an additive complement of S\mathcal{S} so that S+W{nN:nN0}\mathcal{S} + \mathcal{W} \supset \{n \in \mathbb{N}: n \geq N_0\} for some N0N_0. Let RS,W(n)=#{(s,w):n=s+w,sS,wW}\mathcal{R}_{\mathcal{S},\mathcal{W}}(n) = \#\{(s,w):n=s+w, s\in \mathcal{S}, w\in \mathcal{W}\} . In 2017, Chen-Fang \cite{C-F} studied the lower bound of n=1NRS,W(n)\sum_{n=1}^NR_{\mathcal{S},\mathcal{W}}(n). In this note, we improve Cheng-Fang's result and get that n=1NRS,W(n)NN1/2.\sum_{n=1}^NR_{\mathcal{S},\mathcal{W}}(n)-N\gg N^{1/2}. As an application, we make some progress on a problem of Ben Green problem by showing that lim supnπ216n2wnnπ4+0.193π28.\limsup_{n\rightarrow\infty}\frac{\frac{\pi^2}{16}n^2-w_n}{n}\ge \frac{\pi}{4}+\frac{0.193\pi^2}{8}.Comment: The new version significantly improves the result of the former on

    Detecting outlier patterns with query-based artificially generated searching conditions

    Get PDF
    In the age of social computing, finding interesting network patterns or motifs is significant and critical for various areas, such as decision intelligence, intrusion detection, medical diagnosis, social network analysis, fake news identification, and national security. However, subgraph matching remains a computationally challenging problem, let alone identifying special motifs among them. This is especially the case in large heterogeneous real-world networks. In this article, we propose an efficient solution for discovering and ranking human behavior patterns based on network motifs by exploring a user's query in an intelligent way. Our method takes advantage of the semantics provided by a user's query, which in turn provides the mathematical constraint that is crucial for faster detection. We propose an approach to generate query conditions based on the user's query. In particular, we use meta paths between the nodes to define target patterns as well as their similarities, leading to efficient motif discovery and ranking at the same time. The proposed method is examined in a real-world academic network using different similarity measures between the nodes. The experiment result demonstrates that our method can identify interesting motifs and is robust to the choice of similarity measures. © 2014 IEEE

    Detecting Outlier Patterns with Query-based Artificially Generated Searching Conditions

    Get PDF
    In the age of social computing, finding interesting network patterns or motifs is significant and critical for various areas such as decision intelligence, intrusion detection, medical diagnosis, social network analysis, fake news identification, national security, etc. However, sub-graph matching remains a computationally challenging problem, let alone identifying special motifs among them. This is especially the case in large heterogeneous real-world networks. In this work, we propose an efficient solution for discovering and ranking human behavior patterns based on network motifs by exploring a user's query in an intelligent way. Our method takes advantage of the semantics provided by a user's query, which in turn provides the mathematical constraint that is crucial for faster detection. We propose an approach to generate query conditions based on the user's query. In particular, we use meta paths between nodes to define target patterns as well as their similarities, leading to efficient motif discovery and ranking at the same time. The proposed method is examined on a real-world academic network, using different similarity measures between the nodes. The experiment result demonstrates that our method can identify interesting motifs, and is robust to the choice of similarity measures

    Hepatic differentiation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen

    Get PDF
    AbstractThe establishment of protocols to differentiate human pluripotent stem cells (hPSCs) including embryonic (ESC) and induced pluripotent (iPSC) stem cells into functional hepatocyte-like cells (HLCs) creates new opportunities to study liver metabolism, genetic diseases and infection of hepatotropic viruses (hepatitis B and C viruses) in the context of specific genetic background. While supporting efficient differentiation to HLCs, the published protocols are limited in terms of differentiation into fully mature hepatocytes and in a smaller-well format. This limitation handicaps the application of these cells to high-throughput assays. Here we describe a protocol allowing efficient and consistent hepatic differentiation of hPSCs in 384-well plates into functional hepatocyte-like cells, which remain differentiated for more than 3weeks. This protocol affords the unique opportunity to miniaturize the hPSC-based differentiation technology and facilitates screening for molecules in modulating liver differentiation, metabolism, genetic network, and response to infection or other external stimuli

    In vivo quantitative evaluation of gold nanocages' kinetics in sentinel lymph nodes by photoacoustic tomography

    Get PDF
    As a new class of sentinel lymph node (SLN) tracers for photoacoustic (PA) imaging, Au nanocages offer the advantages of noninvasiveness, strong optical absorption in the near-infrared region (for deep penetration), and accumulation in higher concentrations than the initial injected solution. By monitoring the amplitude changes of PA signals in an animal model, we quantified the accumulations of nanocages in SLNs over time. Based on this method, we quantitatively evaluated the kinetics of gold nanocages in SLN in terms of concentration, size, and surface modification. We could detect the SLN at an Au nanocage injection concentration of 50 pM and a dose of 100 μL in vivo. This concentration is about 40 times less than the previously reported value. We also investigated the influence of nanocages' size (50 nm and 30 nm in edge length), and the effects of surface modification (with positive, or neutral, or negative surface charges). The results are helpful to develop this AuNC-based PA imaging system for noninvasive lymph node mapping, providing valuable information about metastatic cancer staging
    corecore