8 research outputs found

    Effects of taxonomy, sediment, and water column on C:N:P stoichiometry of submerged macrophytes in Yangtze floodplain shallow lakes, China

    No full text
    Carbon (C), nitrogen (N) and phosphorus (P) are the three most important essential elements limiting growth of primary producers. Submerged macrophytes generally absorb nutrients from sediments by root uptake. However, the C:N:P stoichiometric signatures of plant tissue are affected by many additional factors such as taxonomy, nutrient availability, and light availability. We first revealed the relative importance of taxonomy, sediment, and water column on plant C:N:P stoichiometry using variance partitioning based on partial redundancy analyses. Results showed that taxonomy was the most important factor in determining C:N:P stoichiometry, then the water column and finally the sediment. In this study, a significant positive relationship was found between community C concentration and macrophyte community biomass, indicating that the local low C availability in macrophytes probably was the main reason why submerged macrophytes declined in Yangtze floodplain shallow lakes. Based on our study, it is suggested that submerged macrophytes in Yangtze floodplain shallow lakes are primarily limited by low light levels rather than nutrient availability.</p

    Effects of high ammonium enrichment in water column on the clonal growth of submerged macrophyte Vallisneria natans

    No full text
    As we know, the survival of young ramets and stolons is essential for the clonal growth of many aquatic plants. However, few NH4+ enrichment experiments on clonal growth of submerged macrophytes have been conducted to provide possible evidences for their declines in eutrophic lakes. Here, the growth and physiological responses of V. natans to the enrichment of NH4+-N were examined under six inorganic nitrogen (IN, i.e., the sum of nitrate nitrogen (NO3--N) and ammonium nitrogen (NH4+-N)) concentrations (control, 2.5, 4.5, 6.5, 8.5, and 10.5mgL(-1)). When NH4+-N concentration increased over 0.5mgL(-1), free amino acid (FAA) contents in leaves and stolons increased while soluble carbohydrate (SC) and starch contents decreased, and major growth indices (total biomass of plants, number of ramets, and stolon dry weight (DW)) also showed a degressive tendency. Remarkably, the stolon DW significantly declined with increasing FAA, but significantly positively related to SC and starch. These results indicated that clonal growth of V. natans was inhibited by high NH4+-N concentration, and imbalance of C-N metabolism of stolons partly explained the decline of submerged clonal macrophytes. In this study, the leaves of new and small (NS) ramets contained significantly more FAA and less SC than that of mature and mother (MM) plants, indicating that the C-N metabolism of young ramets was easier to be disrupted, consequently inhibiting the clonal growth of aquatic plants. Furthermore, under the condition of high NH4+-N concentration, FAA may be a useful indicator of both macrophyte growth and physiological stress of plants

    Stoichiometric mechanisms of regime shifts in freshwater ecosystem

    No full text
    Catastrophic regime shifts in shallow lakes are hard to predict due to a lack of clear understanding of the associate mechanisms. Theory of alternative stable states suggests that eutrophication has profound negative effects on the structure, function and stability of freshwater ecosystems. However, it is still unclear how eutrophication destabilizes ecosystems stoichiometrically before a tipping point is reached. The stoichiometric homeostasis (H), which links fine-scale process to broad-scale patterns, is a key parameter in ecological stoichiometry. Based on investigation of 97 shallow lakes on the Yangtze Plain, China, we measured nitrogen (N) and phosphorus (P) concentrations of the aboveground tissues of common submerged macrophyte species and their corresponding sediments. We found submerged macrophytes showed significant stoichiometric homeostasis for P (H-p) but not for N (H-N). Furthermore, H-p was positively correlated with dominance and stability at the species level, and community production and stability at the community level. Identifying where macrophyte community collapse is a fundamental way to quantify their resilience. Threshold detection showed that macrophyte community dominated by high-H-p species had a higher value of tipping point (0.08 vs. 0.06 mg P L-1 in lake water), indicating their strong resilience to eutrophication. In addition, macrophytes with high H-p were predominant in relative oligotrophic sediments and have higher ability in stabilizing the water environment compared to those low-H-p ones. Our results suggested that ecosystem dominated by homeostatic macrophyte communities was more productive, stable and resilient to eutrophication. Eutrophication-induced stoichiometric imbalance may destabilize the ecosystem by altering the community structure from high-to low-H-p species. Efforts should be focused on maintaining and restoration of high homeostatic communities to make ecosystem more resilient, which can significantly improve our understanding of the critical transition mechanisms. (C) 2018 Elsevier Ltd. All rights reserved.</p

    Carbon, Nitrogen, and Phosphorus Allocation Strategy Among Organs in Submerged Macrophytes Is Altered by Eutrophication

    No full text
    The allocation of limiting elements among plant organs is an important aspect of the adaptation of plants to their ambient environment. Although eutrophication can extremely alter light and nutrient availability, little is known about nutrient partitioning among organs of submerged macrophytes in response to eutrophication. Here, we analyzed the stoichiometric scaling of carbon (C), nitrogen (N), and phosphorus (P) concentrations among organs (leaf, stem, and root) of 327 individuals of seven common submerged macrophytes (three growth forms), sampled from 26 Yangtze plain lakes whose nutrient levels differed. Scaling exponents of stem nutrients to leaf (or root) nutrients varied among the growth forms. With increasing water total N (WTN) concentration, the scaling exponents of stem C to leaf (or root) C increased from 1, however, those of stem P to root P showed the opposite trend. These results indicated that, as plant nutrient content increased, plants growing in low WTN concentration accumulated leaf C (or stem P) at a faster rate, whereas those in high WTN concentration showed a faster increase in their stem C (or root P). Additionally, the scaling exponents of stem N to leaf (or root) N and stem P to leaf P were consistently large than 1, but decreased with a greater WTN concentration. This suggested that plants invested more N and P into stem than leaf tissues, with a higher investment of N in stem than root tissues, but eutrophication would decrease the allocation of N and P to stem. Such shifts in plant nutrient allocation strategies from low to high WTN concentration may be attributed to changed light and nutrient availability. In summary, eutrophication would alter nutrient allocation strategies of submerged macrophytes, which may influence their community structures by enhancing the competitive ability of some species in the process of eutrophication

    Spatial and interspecies differences in concentrations of eight trace elements in wild freshwater fishes at different trophic levels from middle and eastern China

    No full text
    There have been numerous studies on concentrations of trace elements in aquatic ecosystems, but few have been conducted at a large spatial scale. This study collected 410 samples of five wild freshwater fishes at different trophic levels from middle and eastern China. Concentrations of eight trace elements, chromium (Cr), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), lead (Pb) and cadmium (Cd) and stable isotope ratios (delta C-13 and delta N-15) were determined in dorsal muscle of fishes. Spatially, concentrations of trace elements were least in fishes from the Hai River Basin, while those in fishes from the Taihu Lake Basin were greatest The carnivorous topmouth culter and omnivorous common carp and crucian carp accumulated greater amounts of trace elements than did the planktivorous silver carp and bighead carp. Trophic biomagnification was for Cu, Fe and Zn, but not for Cr, Ni, As, Pb and Cd. Concentrations of As in 15 muscle samples (3.7%) from Taihu Lake Basin exceeded the guidelines (1.0 mg/kg, wet mass) provided by FAO/WHO (2014), while the total target hazard quotient (TTHQ) values were &lt;1.0, indicating no obvious non-carcinogenic risks to humans that consume those fishes. However, people who consume larger amounts of fish products, or people who are vulnerable, such as pregnant women, children and people with poor health, might be at greater risk. Also, exposure to trace metals through other routes cannot be ignored. Accumulations of trace elements in Chinese freshwater fishes were affected by both geographical conditions and human activities. (C) 2019 Published by Elsevier B.V.</p
    corecore