62 research outputs found

    Rethinking Pseudo-LiDAR Representation

    Full text link
    The recently proposed pseudo-LiDAR based 3D detectors greatly improve the benchmark of monocular/stereo 3D detection task. However, the underlying mechanism remains obscure to the research community. In this paper, we perform an in-depth investigation and observe that the efficacy of pseudo-LiDAR representation comes from the coordinate transformation, instead of data representation itself. Based on this observation, we design an image based CNN detector named Patch-Net, which is more generalized and can be instantiated as pseudo-LiDAR based 3D detectors. Moreover, the pseudo-LiDAR data in our PatchNet is organized as the image representation, which means existing 2D CNN designs can be easily utilized for extracting deep features from input data and boosting 3D detection performance. We conduct extensive experiments on the challenging KITTI dataset, where the proposed PatchNet outperforms all existing pseudo-LiDAR based counterparts. Code has been made available at: https://github.com/xinzhuma/patchnet.Comment: ECCV2020. Supplemental Material attache

    HIF-1α effects on angiogenic potential in human small cell lung carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia-inducible factor-1 alpha (HIF-1α) maybe an important regulatory factor for angiogenesis of small cell lung cancer (SCLC). Our study aimed to investigate the effect of HIF-1α on angiogenic potential of SCLC including two points: One is the effect of HIF-1α on the angiogenesis of SCLC <it>in vivo</it>. The other is the regulation of angiogenic genes by HIF-1α <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p><it>In vivo </it>we used an alternative method to study the effect of HIF-1a on angiogenic potential of SCLC by buliding NCI-H446 cell transplantation tumor on the chick embryo chorioallantoic membrane (CAM) surface. <it>In vitro </it>we used microarray to screen out the angiogenic genes regulated by HIF-1a and tested their expression level in CAM transplantation tumor by RT-PCR and Western-blot analysis.</p> <p>Results</p> <p><it>In vivo </it>angiogenic response surrounding the SCLC transplantation tumors in chick embryo chorioallantoic membrane (CAM) was promoted after exogenous HIF-1α transduction (p < 0.05). <it>In vitro </it>the changes of angiogenic genes expression induced by HIF-1α in NCI-H446 cells were analyzed by cDNA microarray experiments. HIF-1α upregulated the expression of angiogenic genes VEGF-A, TNFAIP6, PDGFC, FN1, MMP28, MMP14 to 6.76-, 6.69-, 2.26-, 2.31-, 4.39-, 2.97- fold respectively and glycolytic genes GLUT1, GLUT2 to2.98-, 3.74- fold respectively. In addition, the expression of these angiogenic factors were also upregulated by HIF-1α in the transplantion tumors in CAM as RT-PCR and Western-blot analysis indicated.</p> <p>Conclusions</p> <p>These results indicated that HIF-1α may enhance the angiogenic potential of SCLC by regulating some angiogenic genes such as VEGF-A, MMP28 etc. Therefore, HIF-1α may be a potential target for the gene targeted therapy of SCLC.</p

    Deep Instance Segmentation with Automotive Radar Detection Points

    Full text link
    Automotive radar provides reliable environmental perception in all-weather conditions with affordable cost, but it hardly supplies semantic and geometry information due to the sparsity of radar detection points. With the development of automotive radar technologies in recent years, instance segmentation becomes possible by using automotive radar. Its data contain contexts such as radar cross section and micro-Doppler effects, and sometimes can provide detection when the field of view is obscured. The outcome from instance segmentation could be potentially used as the input of trackers for tracking targets. The existing methods often utilize a clustering based classification framework, which fits the need of real-time processing but has limited performance due to minimum information provided by sparse radar detection points. In this paper, we propose an efficient method based on clustering of estimated semantic information to achieve instance segmentation for the sparse radar detection points. In addition, we show that the performance of the proposed approach can be further enhanced by incorporating the visual multi-layer perceptron. The effectiveness of the proposed method is verified by experimental results on the popular RadarScenes dataset, achieving 89.53% mCov and 86.97% mAP0.5, which is the best comparing to other approaches in the literature. More significantly, the proposed algorithm consumes memory around 1MB, and the inference time is less than 40ms. These two criteria ensure the practicality of the proposed method in real-world system

    Effect of leaf phenology and morphology on the coordination between stomatal and minor vein densities

    Get PDF
    Leaf phenology (evergreen vs. deciduous) and morphology (simple vs. compound) are known to be related to water use strategies in tree species and critical adaptation to certain climatic conditions. However, the effect of these two traits and their interactions on the coordination between minor vein density (MVD) and stomatal density (SD) remains unclear. In this study, we examined the leaves of 108 tree species from plots in a primary subtropical forest in southern China, including tree species with different leaf morphologies and phenologies. We assessed nine leaf water-related functional traits for all species, including MVD, SD, leaf area (LA), minor vein thickness (MVT), and stomatal length (SL). The results showed no significant differences in mean LA and SD between either functional group (simple vs. compound and evergreen vs. deciduous). However, deciduous trees displayed a significantly higher mean MVD compared to evergreen trees. Similarly, compound-leaved trees have a higher (marginally significant) MVD than simple-leaved trees. Furthermore, we found that leaf morphology and phenology have significantly interactive effects on SL, and the compound-leafed deciduous trees exhibited the largest average SL among the four groups. There were significant correlations between the MVD and SD in all different tree groups; however, the slopes and interceptions differed within both morphology and phenology. Our results indicate that MVD, rather than SD, may be the more flexible structure for supporting the coordination between leaf water supply and demand in different leaf morphologies and phenologies. The results of the present study provide mechanistic understandings of the functional advantages of different leaf types, which may involve species fitness in community assembly and divergent responses to climate changes

    Long-term effects of biochar application on the growth and physiological characteristics of maize

    Get PDF
    Biochar, as a soil conditioner, has been widely used to promote the growth of maize, but most of the current research is short-term experiments, which limits the research on the long-term effects of biochar, especially the physiological mechanism of biochar on maize growth in aeolian sandy soil is still unclear. Here, we set up two groups of pot experiments, respectively after the new biochar application and one-time biochar application seven years ago (CK: 0 t ha-1, C1: 15.75 t ha-1, C2: 31.50 t ha-1, C3: 63.00 t ha-1, C4: 126.00 t ha-1), and planted with maize. Subsequently, samples were collected at different periods to explore the effect of biochar on maize growth physiology and its after-effect. Results showed that the plant height, biomass, and yield of maize showed the highest rates of increase at the application rate of 31.50 t ha-1 biochar, with 22.22% increase in biomass and 8.46% increase in yield compared with control under the new application treatment. Meanwhile, the plant height and biomass of maize increased gradually with the increase of biochar application under the one-time biochar application seven years ago treatment (increased by 4.13%-14.91% and 13.83%-58.39% compared with control). Interestingly, the changes in SPAD value (leaf greenness), soluble sugar and soluble protein contents in maize leaves corresponded with the trend of maize growth. Conversely, the changes of malondialdehyde (MDA), proline (PRO), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) manifested an opposite trend to the growth of maize. In conclusion, 31.50 t ha-1 biochar application can promote the growth of maize by inducing changes in its physiological and biochemical characteristics, but excessive biochar application rates ranging from 63.00-126.00 t ha-1 inhibited the growth of maize. After seven years of field aging, the inhibitory effect of 63.00-126.00 t ha-1 biochar amount on maize growth disappeared and changed to promoting effect

    IL-2 Inhibition of Th17 Generation Rather Than Induction of Treg Cells Is Impaired in Primary Sjögren’s Syndrome Patients

    Get PDF
    ObjectiveTo investigate the role of IL-2 in the balance of Th17 and Tregs and elucidate the underlying mechanisms of enhanced Th17 differentiation in primary Sjögren’s syndrome (pSS) patients.MethodsThis study involved 31 pSS patients, 7 Sicca patients, and 31 healthy subjects. Th17 and Treg cells were determined by flow cytometry, and IL-17A was detected by immunohistochemistry. IL-2 and IL-6 levels were assessed by ELISA and qPCR. p-STAT5 and p-STAT3 in salivary glands (SGs) were evaluated by immunohistochemistry and flow cytometry. The binding of STAT5 and STAT3 to the Il17a gene locus was measured by chromatin immunoprecipitation.ResultsWe found that the percentage of Th17 cells was increased in the periphery and SG of pSS patients when compared with healthy subjects, but the Treg cells was unchanged. Meanwhile, the IL-2 level was reduced, and the IL-6 and IL-17A level was increased in the plasma of pSS patients. The ratio of IL-2 and IL-6 level was also decreased and IL-2 level was negatively correlated with the level of IL-17A. The expression of Il6 and Il17a mRNA was significantly increased, whereas Foxp3, Tgfb1, Tnfa, and Ifng mRNA were comparable. Furthermore, the level of STAT5 phosphorylation (p-STAT5) was reduced and p-STAT3 was enhanced in the SGs and in peripheral CD4+ T cells of pSS patients. In vitro IL-2 treatment-induced STAT5 competed with STAT3 binding in human Il17a locus, leading to decreased Th17 differentiation, which was associated with the reduced transcription activation marker H3K4me3.ConclusionOur findings demonstrated a Treg-independent upregulation of Th17 generation in pSS, which is likely due to a lack of IL-2-mediated suppression of Th17 differentiation. This study identified a novel mechanism of IL-2-mediated immune suppression in pSS

    Tubeless video-assisted thoracic surgery for pulmonary ground-glass nodules: expert consensus and protocol (Guangzhou)

    Get PDF

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore