311 research outputs found

    The progress and future of enhancing antiviral capacity by transgenic technology in the silkworm Bombyx mori

    Get PDF
    AbstractBombyx mori is a common lepidopteran model and an important economic insect for silk production. B. mori nucleopolyhedrovirus (BmNPV) is a typical pathogenic baculovirus that causes serious economic losses in sericulture. B. mori and BmNPV are a model of insect host and pathogen interaction including invasion of the host by the pathogen, host response, and enhancement of host resistance. The antiviral capacity of silkworms can be improved by transgenic technology such as overexpression of an endogenous or exogenous antiviral gene, RNA interference of the BmNPV gene, or regulation of the immune pathway to inhibit BmNPV at different stages of infection. Antiviral capacity could be further increased by combining different methods. We discuss the future of an antiviral strategy in silkworm, including possible improvement of anti-BmNPV, the feasibility of constructing transgenic silkworms with resistance to multiple viruses, and the safety of transgenic silkworms. The silkworm model could provide a reference for disease control in other organisms

    Advances in the Arms Race Between Silkworm and Baculovirus

    Get PDF
    Insects are the largest group of animals. Nearly all organisms, including insects, have viral pathogens. An important domesticated economic insect is the silkworm moth Bombyx mori. B. mori nucleopolyhedrovirus (BmNPV) is a typical baculovirus and a primary silkworm pathogen. It causes major economic losses in sericulture. Baculoviruses are used in biological pest control and as a bioreactor. Silkworm and baculovirus comprise a well-established model of insect–virus interactions. Several recent studies have focused on this model and provided novel insights into viral infections and host defense. Here, we focus on baculovirus invasion, silkworm immune response, baculovirus evasion of host immunity, and enhancement of antiviral efficacy. We also discuss major issues remaining and future directions of research on silkworm antiviral immunity. Elucidation of the interaction between silkworm and baculovirus furnishes a theoretical basis for targeted pest control, enhanced pathogen resistance in economically important insects, and bioreactor improvement

    MicroRNAs show diverse and dynamic expression patterns in multiple tissues of Bombyx mori

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) repress target genes at the post-transcriptional level, and function in the development and cell-lineage pathways of host species. Tissue-specific expression of miRNAs is highly relevant to their physiological roles in the corresponding tissues. However, to date, few miRNAs have been spatially identified in the silkworm.</p> <p>Results</p> <p>We establish for the first time the spatial expression patterns of nearly 100 miRNAs in multiple normal tissues (organs) of <it>Bombyx mori </it>females and males using microarray and Northern-blotting analyses. In all, only 10 miRNAs were universally distributed (including bmo-let-7 and bmo-bantam), while the majority were expressed exclusively or preferentially in specific tissue types (e.g., bmo-miR-275 and bmo-miR-1). Additionally, we examined the developmental patterns of miRNA expression during metamorphosis of the body wall, silk glands, midgut and fat body. In total, 63 miRNAs displayed significant alterations in abundance in at least 1 tissue during the developmental transition from larvae to pupae (e.g., bmo-miR-263b and bmo-miR-124). Expression patterns of five miRNAs were significantly increased during metamorphosis in all four tissues (e.g., bmo-miR-275 and bmo-miR-305), and two miRNA pairs, bmo-miR-10b-3p/5p and bmo-miR-281-3p/5p, showed coordinate expression.</p> <p>Conclusions</p> <p>In this study, we conducted preliminary spatial measurements of several miRNAs in the silkworm. Periods of rapid morphological change were associated with alterations in miRNA expression patterns in the body wall, silk glands, midgut and fat body during metamorphosis. Accordingly, we propose that corresponding ubiquitous or tissue-specific expression of miRNAs supports their critical roles in tissue specification. These results should facilitate future functional analyses.</p

    MicroRNAs of Bombyx mori identified by Solexa sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNA (miRNA) and other small regulatory RNAs contribute to the modulation of a large number of cellular processes. We sequenced three small RNA libraries prepared from the whole body, and the anterior-middle and posterior silk glands of <it>Bombyx mori</it>, with a view to expanding the repertoire of silkworm miRNAs and exploring transcriptional differences in miRNAs between segments of the silk gland.</p> <p>Results</p> <p>With the aid of large-scale Solexa sequencing technology, we validated 257 unique miRNA genes, including 202 novel and 55 previously reported genes, corresponding to 324 loci in the silkworm genome. Over 30 known silkworm miRNAs were further corrected in their sequence constitutes and length. A number of reads originated from the loop regions of the precursors of two previously reported miRNAs (bmo-miR-1920 and miR-1921). Interestingly, the majority of the newly identified miRNAs were silkworm-specific, 23 unique miRNAs were widely conserved from invertebrates to vertebrates, 13 unique miRNAs were limited to invertebrates, and 32 were confined to insects. We identified 24 closely positioned clusters and 45 paralogs of miRNAs in the silkworm genome. However, sequence tags showed that paralogs or clusters were not prerequisites for coordinated transcription and accumulation. The majority of silkworm-specific miRNAs were located in transposable elements, and displayed significant differences in abundance between the anterior-middle and posterior silk gland.</p> <p>Conclusions</p> <p>Conservative analysis revealed that miRNAs can serve as phylogenetic markers and function in evolutionary signaling. The newly identified miRNAs greatly enrich the repertoire of insect miRNAs, and provide insights into miRNA evolution, biogenesis, and expression in insects. The differential expression of miRNAs in the anterior-middle and posterior silk glands supports their involvement as new levels in the regulation of the silkworm silk gland.</p

    A Genome-Wide Survey for Host Response of Silkworm, Bombyx mori during Pathogen Bacillus bombyseptieus Infection

    Get PDF
    Host-pathogen interactions are complex relationships, and a central challenge is to reveal the interactions between pathogens and their hosts. Bacillus bombysepticus (Bb) which can produces spores and parasporal crystals was firstly separated from the corpses of the infected silkworms (Bombyx mori). Bb naturally infects the silkworm can cause an acute fuliginosa septicaemia and kill the silkworm larvae generally within one day in the hot and humid season. Bb pathogen of the silkworm can be used for investigating the host responses after the infection. Gene expression profiling during four time-points of silkworm whole larvae after Bb infection was performed to gain insight into the mechanism of Bb-associated host whole body effect. Genome-wide survey of the host genes demonstrated many genes and pathways modulated after the infection. GO analysis of the induced genes indicated that their functions could be divided into 14 categories. KEGG pathway analysis identified that six types of basal metabolic pathway were regulated, including genetic information processing and transcription, carbohydrate metabolism, amino acid and nitrogen metabolism, nucleotide metabolism, metabolism of cofactors and vitamins, and xenobiotic biodegradation and metabolism. Similar to Bacillus thuringiensis (Bt), Bb can also induce a silkworm poisoning-related response. In this process, genes encoding midgut peritrophic membrane proteins, aminopeptidase N receptors and sodium/calcium exchange protein showed modulation. For the first time, we found that Bb induced a lot of genes involved in juvenile hormone synthesis and metabolism pathway upregulated. Bb also triggered the host immune responses, including cellular immune response and serine protease cascade melanization response. Real time PCR analysis showed that Bb can induce the silkworm systemic immune response, mainly by the Toll pathway. Anti-microorganism peptides (AMPs), including of Attacin, Lebocin, Enbocin, Gloverin and Moricin families, were upregulated at 24 hours post the infection

    MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are expressed by a wide range of eukaryotic organisms, and function in diverse biological processes. Numerous miRNAs have been identified in <it>Bombyx mori</it>, but the temporal expression profiles of miRNAs corresponding to each stage transition over the entire life cycle of the silkworm remain to be established. To obtain a comprehensive overview of the correlation between miRNA expression and stage transitions, we performed a whole-life test and subsequent stage-by-stage examinations on nearly one hundred miRNAs in the silkworm.</p> <p>Results</p> <p>Our results show that miRNAs display a wide variety of expression profiles over the whole life of the silkworm, including continuous expression from embryo to adult (miR-184), up-regulation over the entire life cycle (let-7 and miR-100), down-regulation over the entire life cycle (miR-124), expression associated with embryogenesis (miR-29 and miR-92), up-regulation from early 3<sup>rd </sup>instar to pupa (miR-275), and complementary pulses in expression between miR-34b and miR-275. Stage-by-stage examinations revealed further expression patterns, such as emergence at specific time-points during embryogenesis and up-regulation of miRNA groups in late embryos (miR-1 and bantam), expression associated with stage transition between instar and molt larval stages (miR-34b), expression associated with silk gland growth and spinning activity (miR-274), continuous high expression from the spinning larval to pupal and adult stages (miR-252 and miR-31a), a coordinate expression trough in day 3 pupae of both sexes (miR-10b and miR-281), up-regulation in pupal metamorphosis of both sexes (miR-29b), and down-regulation in pupal metamorphosis of both sexes (miR-275).</p> <p>Conclusion</p> <p>We present the full-scale expression profiles of miRNAs throughout the life cycle of <it>Bombyx mori</it>. The whole-life expression profile was further investigated via stage-by-stage analysis. Our data provide an important resource for more detailed functional analysis of miRNAs in this animal.</p

    Multiplex genomic structure variation mediated by TALEN and ssODN

    Get PDF
    BACKGROUND: Genomic structure variation (GSV) is widely distributed in various organisms and is an important contributor to human diversity and disease susceptibility. Efficient approaches to induce targeted genomic structure variation are crucial for both analytic and therapeutic studies of GSV. Here, we presented an efficient strategy to induce targeted GSV including chromosomal deletions, duplications and inversions in a precise manner. RESULTS: Utilizing Transcription Activator-Like Effector Nucleases (TALEN) designed to target two distinct sites, we demonstrated targeted deletions, duplications and inversions of an 8.9 Mb chromosomal segment, which is about one third of the entire chromosome. We developed a novel method by combining TALEN-induced GSV and single stranded oligodeoxynucleotide (ssODN) mediated gene modifications to reduce unwanted mutations occurring during the targeted GSV using TALEN or Zinc finger nuclease (ZFN). Furthermore, we showed that co-introduction of TALEN and ssODN generated unwanted complex structure variation other than the expected chromosomal deletion. CONCLUSIONS: We demonstrated the ability of TALEN to induce targeted GSV and provided an efficient strategy to perform GSV precisely. Furthermore, it is the first time to show that co-introduction of TALEN and ssODN generated unwanted complex structure variation. It is plausible to believe that the strategies developed in this study can be applied to other organisms, and will help understand the biological roles of GSV and therapeutic applications of TALEN and ssODN. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-41) contains supplementary material, which is available to authorized users

    Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori

    Get PDF
    Using a genome-wide oligonucleotide microarray, gene expression was surveyed in multiple silkworm tissues on day 3 of the fifth instar, providing a new resource for annotating the silkworm genome
    corecore