132 research outputs found

    Adaptive frequency-domain equalization for the transmission of the fundamental mode in a few-mode fiber

    Get PDF
    We propose and experimentally demonstrate single-carrier adaptive frequency-domain equalization (SC-FDE) to mitigate multipath interference (MPI) for the transmission of the fundamental mode in a few-mode fiber. The FDE approach reduces computational complexity significantly compared to the time-domain equalization (TDE) approach while maintaining the same performance. Both FDE and TDE methods are evaluated by simulating long-haul fundamental-mode transmission using a few-mode fiber. For the fundamental mode operation, the required tap length of the equalizer depends on the differential mode group delay (DMGD) of a single span rather than DMGD of the entire link

    The Science of Detecting LLM-Generated Texts

    Full text link
    The emergence of large language models (LLMs) has resulted in the production of LLM-generated texts that is highly sophisticated and almost indistinguishable from texts written by humans. However, this has also sparked concerns about the potential misuse of such texts, such as spreading misinformation and causing disruptions in the education system. Although many detection approaches have been proposed, a comprehensive understanding of the achievements and challenges is still lacking. This survey aims to provide an overview of existing LLM-generated text detection techniques and enhance the control and regulation of language generation models. Furthermore, we emphasize crucial considerations for future research, including the development of comprehensive evaluation metrics and the threat posed by open-source LLMs, to drive progress in the area of LLM-generated text detection

    SPeC: A Soft Prompt-Based Calibration on Mitigating Performance Variability in Clinical Notes Summarization

    Full text link
    Electronic health records (EHRs) store an extensive array of patient information, encompassing medical histories, diagnoses, treatments, and test outcomes. These records are crucial for enabling healthcare providers to make well-informed decisions regarding patient care. Summarizing clinical notes further assists healthcare professionals in pinpointing potential health risks and making better-informed decisions. This process contributes to reducing errors and enhancing patient outcomes by ensuring providers have access to the most pertinent and current patient data. Recent research has shown that incorporating prompts with large language models (LLMs) substantially boosts the efficacy of summarization tasks. However, we show that this approach also leads to increased output variance, resulting in notably divergent outputs even when prompts share similar meanings. To tackle this challenge, we introduce a model-agnostic Soft Prompt-Based Calibration (SPeC) pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization. Experimental findings on multiple clinical note tasks and LLMs indicate that our method not only bolsters performance but also effectively curbs variance for various LLMs, providing a more uniform and dependable solution for summarizing vital medical information

    Supermodes for optical transmission

    Get PDF
    In this paper, the concept of supermode is introduced for long-distance optical transmission systems. The supermodes exploit coupling between the cores of a multi-core fiber, in which the core-to-core distance is much shorter than that in conventional multi-core fiber. The use of supermodes leads to a larger mode effective area and higher mode density than the conventional multi-core fiber. Through simulations, we show that the proposed coupled multi-core fiber allows lower modal dependent loss, mode coupling and differential modal group delay than few-mode fibers. These properties suggest that the coupled multi-core fiber could be a good candidate for both spatial division multiplexing and single-mode operation

    Chatbot4QR: Interactive query refinement for technical question retrieval

    Get PDF

    Efficient XAI Techniques: A Taxonomic Survey

    Full text link
    Recently, there has been a growing demand for the deployment of Explainable Artificial Intelligence (XAI) algorithms in real-world applications. However, traditional XAI methods typically suffer from a high computational complexity problem, which discourages the deployment of real-time systems to meet the time-demanding requirements of real-world scenarios. Although many approaches have been proposed to improve the efficiency of XAI methods, a comprehensive understanding of the achievements and challenges is still needed. To this end, in this paper we provide a review of efficient XAI. Specifically, we categorize existing techniques of XAI acceleration into efficient non-amortized and efficient amortized methods. The efficient non-amortized methods focus on data-centric or model-centric acceleration upon each individual instance. In contrast, amortized methods focus on learning a unified distribution of model explanations, following the predictive, generative, or reinforcement frameworks, to rapidly derive multiple model explanations. We also analyze the limitations of an efficient XAI pipeline from the perspectives of the training phase, the deployment phase, and the use scenarios. Finally, we summarize the challenges of deploying XAI acceleration methods to real-world scenarios, overcoming the trade-off between faithfulness and efficiency, and the selection of different acceleration methods.Comment: 15 pages, 3 figure

    Towards Assumption-free Bias Mitigation

    Full text link
    Despite the impressive prediction ability, machine learning models show discrimination towards certain demographics and suffer from unfair prediction behaviors. To alleviate the discrimination, extensive studies focus on eliminating the unequal distribution of sensitive attributes via multiple approaches. However, due to privacy concerns, sensitive attributes are often either unavailable or missing in real-world scenarios. Therefore, several existing works alleviate the bias without sensitive attributes. Those studies face challenges, either in inaccurate predictions of sensitive attributes or the need to mitigate unequal distribution of manually defined non-sensitive attributes related to bias. The latter requires strong assumptions about the correlation between sensitive and non-sensitive attributes. As data distribution and task goals vary, the strong assumption on non-sensitive attributes may not be valid and require domain expertise. In this work, we propose an assumption-free framework to detect the related attributes automatically by modeling feature interaction for bias mitigation. The proposed framework aims to mitigate the unfair impact of identified biased feature interactions. Experimental results on four real-world datasets demonstrate that our proposed framework can significantly alleviate unfair prediction behaviors by considering biased feature interactions
    • …
    corecore