103 research outputs found
Deep learning-based carotid media-adventitia and lumen-intima boundary segmentation from three-dimensional ultrasound images
Purpose: Quantification of carotid plaques has been shown to be important for assessing as well as monitoring the progression and regression of carotid atherosclerosis. Various metrics have been proposed and methods of measurements ranging from manual tracing to automated segmentations have also been investigated. Of those metrics, quantification of carotid plaques by measuring vessel-wall-volume (VWV) using the segmented media-adventitia (MAB) and lumen-intima (LIB) boundaries has been shown to be sensitive to temporal changes in carotid plaque burden. Thus, semi-automatic MAB and LIB segmentation methods are required to help generate VWV measurements with high accuracy and less user interaction. Methods: In this paper, we propose a semiautomatic segmentation method based on deep learning to segment the MAB and LIB from carotid three-dimensional ultrasound (3DUS) images. For the MAB segmentation, we convert the segmentation problem to a pixel-by-pixel classification problem. A dynamic convolutional neural network (Dynamic CNN) is proposed to classify the patches generated by sliding a window along the norm line of the initial contour where the CNN model is fine-tuned dynamically in each test task. The LIB is segmented by applying a region-of-interest of carotid images to a U-Net model, which allows the network to be trained end-to-end for pixel-wise classification. Results: A total of 144 3DUS images were used in this development, and a threefold cross-validation technique was used for evaluation of the proposed algorithm. The proposed algorithm-generated accuracy was significantly higher than the previous methods but with less user interactions. Comparing the algorithm segmentation results with manual segmentations by an expert showed that the average Dice similarity coefficients (DSC) were 96.46 ± 2.22% and 92.84 ± 4.46% for the MAB and LIB, respectively, while only an average of 34 s (vs 1.13, 2.8 and 4.4 min in previous methods) was required to segment a 3DUS image. The interobserver experiment indicated that the DSC was 96.14 ± 1.87% between algorithm-generated MAB contours of two observers\u27 initialization. Conclusions: Our results showed that the proposed carotid plaque segmentation method obtains high accuracy and repeatability with less user interactions, suggesting that the method could be used in clinical practice to measure VWV and monitor the progression and regression of carotid plaques
Improving the Brain-Computer Interface Learning Process with Gamification in Motor Imagery: A Review
Brain-computer-interface-based motor imagery (MI-BCI), a control method for transferring the imagination of motor behavior to computer-based commands, could positively impact neural functions. With the safety guaranteed by non-invasive BCI devices, this method has the potential to enhance rehabilitation and physical outcomes. Therefore, this MI-BCI control strategy has been highly researched. However, applying a non-invasive MI-BCI to real life is still not ideal. One of the main reasons is the monotonous training procedure. Although researchers have reviewed optimized signal processing methods, no suggestion is found in training feedback design. The authors believe that enhancing the engagement interface via gamification presents a potential method that could increase the MI-BCI outcome. After analyzing 2524 articles (from 2001 to 2020), 28 pieces of research are finally used to evaluate the feasibility of using gamified MI-BCI system for training. This paper claims that gamification is feasible for MI-BCI training with an average accuracy of 74.35% among 111 individuals and positive reports from 26 out of 28 studies. Furthermore, this literature review suggests more emphasis should be on immersive and humanoid design for a gaming system, which could support relieving distraction, stimulate correct MI and improve learning outcomes. Interruptive training issues such as disturbing graphical interface design and potential solutions have also been presented for further research
GeodesicEmbedding (GE): a high-dimensional embedding approach for fast geodesic distance queries
In this paper, we develop a novel method for fast geodesic distance queries. The key idea is to embed the mesh into a high-dimensional space, such that the Euclidean distance in the high-dimensional space can induce the geodesic distance in the original manifold surface. However, directly solving the high-dimensional embedding problem is not feasible due to the large number of variables and the fact that the embedding problem is highly nonlinear. We overcome the challenges with two novel ideas. First, instead of taking all vertices as variables, we embed only the saddle vertices, which greatly reduces the problem complexity. We then compute a local embedding for each non-saddle vertex. Second, to reduce the large approximation error resulting from the purely Euclidean embedding, we propose a cascaded optimization approach that repeatedly introduces additional embedding coordinates with a non-Euclidean function to reduce the approximation residual. Using the precomputation data, our approach can determine the geodesic distance between any two vertices in near-constant time. Computational testing results show that our method is more desirable than previous geodesic distance queries methods
Corrigendum: Inhibition of O-GlcNAc transferase sensitizes prostate cancer cells to docetaxel
The expression of O-GlcNAc transferase (OGT) and its catalytic product, O-GlcNAcylation (O-GlcNAc), are elevated in many types of cancers, including prostate cancer (PC). Inhibition of OGT serves as a potential strategy for PC treatment alone or combinational therapy. PC is the second common cancer type in male worldwide, for which chemotherapy is still the first-line treatment. However, the function of inhibition of OGT on chemotherapeutic response in PC cells is still unknown. In this study, we show that inhibition of OGT by genetic knockdown using shRNA or by chemical inhibition using OGT inhibitors sensitize PC cells to docetaxel, which is the most common chemotherapeutic agent in PC chemotherapy. Furthermore, we identified that microRNA-140 (miR-140) directly binds to OGT mRNA 3′ untranslated region and inhibits OGT expression. Moreover, docetaxel treatment stimulates miR-140 expression, whereas represses OGT expression in PC cells. Overexpression of miR-140 enhanced the drug sensitivity of PC cells to docetaxel, which could be reversed by overexpression of OGT. Overall, this study demonstrates miR-140/OGT axis as therapeutic target in PC treatment and provides a promising adjuvant therapeutic strategy for PC therapy
Uncovering lupus nephritis-specific genes and the potential of TNFRSF17-targeted immunotherapy: a high-throughput sequencing study
IntroductionLupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE). This study aimed to identify LN specific-genes and potential therapeutic targets.MethodsWe performed high-throughput transcriptome sequencing on peripheral blood mononuclear cells (PBMCs) from LN patients. Healthy individuals and SLE patients without LN were used as controls. To validate the sequencing results, qRT-PCR was performed for 5 upregulated and 5 downregulated genes. Furthermore, the effect of the TNFRSF17-targeting drug IBI379 on patient plasma cells and B cells was evaluated by flow cytometry.ResultsOur analysis identified 1493 and 205 differential genes in the LN group compared to the control and SLE without LN groups respectively, with 70 genes common to both sets, marking them as LN-specific. These LN-specific genes were significantly enriched in the ‘regulation of biological quality’ GO term and the cell cycle pathway. Notably, several genes including TNFRSF17 were significantly overexpressed in the kidneys of both LN patients and NZB/W mice. TNFRSF17 levels correlated positively with urinary protein levels, and negatively with complement C3 and C4 levels in LN patients. The TNFRSF17-targeting drug IBI379 effectively induced apoptosis in patient plasma cells without significantly affecting B cells.DiscussionOur findings suggest that TNFRSF17 could serve as a potential therapeutic target for LN. Moreover, IBI379 is presented as a promising treatment option for LN
Mature cystic extragonadal teratoma in Douglas’ pouch: Case report and literature review
Teratomas often occur in the gonads, while Extragonadal mature cystic teratomas are reported occasionally, with the most common site being the omentum. Teratoma in the Douglas sac is extremely rare. we report a rare case of mature cystic Teratoma in the Douglas sac in a 71-year-old woman who underwent laparoscopic surgery. A cyst with a diameter of approximately 6 cm from Douglas was found during surgery, and the mass was separated from both ovaries. Microscopically, the cyst was a mature cystic teratoma that did not originate from the ovary
Effects of Baduanjin exercise on cognitive frailty, oxidative stress, and chronic inflammation in older adults with cognitive frailty: a randomized controlled trial
BackgroundOxidative stress and chronic inflammation play an important role in the pathogenesis process of cognitive frailty (CF). Regular Baduanjin exercise could improve cognitive frailty in older adults, but it is unclear whether the effect of Baduanjin exercise on improving CF is mediated by modulating circulating oxidative stress and inflammatory process.MethodA total of 102 community-dwelling older adults with CF were recruited and randomly allocated into a 24-week Baduanjin exercise training group or no specific exercise intervention control group at an equal rate. Cognitive function and physical frailty index were assessed using the Montreal Cognitive Assessment (MoCA) and the Edmonton Frail Scale (EFS), as well as the oxidative stress and inflammatory cytokines were measured at baseline and after intervention.ResultAfter 24 weeks of intervention, the increased MoCA score (2.51 ± 0.32 points, p < 0.001) and the decreased EFS scores (1.94 ± 0.20 points, p = 0.012) in the Baduanjin group were significantly higher than those in the control group. Serum antioxidant SOD levels were increased by 10.03 ± 4.73 U/mL (p < 0.001), and the prooxidative MDA and 8-iso-PGF2α levels were decreased by −1.08 ± 0.80 nmol/mL (p = 0.030) and −86.61 ± 15.03 ng/L (p < 0.001) in the Baduanjin training group; while inflammatory cytokines IFN-γ, IL-2 and IL-4 levels were increased (1.08 ± 0.33 pg./mL, p = 0.034, 2.74 ± 0.75 pg./mL, p = 0.04 and 1.48 ± 0.35 pg./mL, p = 0.042). In addition, a mediation effect that Baduanjin training improved cognitive ability mediated by an increase of circulating IFN-γ and IL-2 levels were observed in this study.ConclusionRegular Baduanjin exercise training could improve the cognitive frailty of the community-dwelling older adults with CF, and modulate oxidative stress and inflammatory processes by reducing circulating pro-oxidative MDA and 8-iso-PGF2α levels and increasing anti-oxidative SOD levels, as well as impacting inflammatory cytokines IFN-γ, IL-2, and IL-4 levels. Nevertheless, the mechanism of Baduanjin exercise mediating oxidative stress and inflammatory processes should be cautious to be explained.Clinical trial registrationhttp://www.chictr.org.cn/index.aspx, ChiCTR1800020341
MEIS2C and MEIS2D promote tumor progression via Wnt/β-catenin and hippo/YAP signaling in hepatocellular carcinoma
Abstract
Background
MEIS2 has been identified as one of the key transcription factors in the gene regulatory network in the development and pathogenesis of human cancers. Our study aims to identify the regulatory mechanisms of MEIS2 in hepatocellular carcinoma (HCC), which could be targeted to develop new therapeutic strategies.
Methods
The variation of MEIS2 levels were assayed in a cohort of HCC patients. The proliferation, clone-formation, migration, and invasion abilities of HCC cells were measured to analyze the effects of MEIS2C and MEIS2D (MEIS2C/D) knockdown with small hairpin RNAs in vitro and in vivo. Chromatin immunoprecipitation (ChIP) was performed to identify MEIS2 binding site. Immunoprecipitation and immunofluorescence assays were employed to detect proteins regulated by MEIS2.
Results
The expression of MEIS2C/D was increased in the HCC specimens when compared with the adjacent noncancerous liver (ANL) tissues. Moreover, MEIS2C/D expression negatively correlated with the prognosis of HCC patients. On the other hand, knockdown of MEIS2C/D could inhibit proliferation and diminish migration and invasion of hepatoma cells in vitro and in vivo. Mechanistically, MESI2C activated Wnt/β-catenin pathway in cooperation with Parafibromin (CDC73), while MEIS2D suppressed Hippo pathway by promoting YAP nuclear translocation via miR-1307-3p/LATS1 axis. Notably, CDC73 could directly either interact with MEIS2C/β-catenin or MEIS2D/YAP complex, depending on its tyrosine-phosphorylation status.
Conclusions
Our studies indicate that MEISC/D promote HCC development via Wnt/β-catenin and Hippo/YAP signaling pathways, highlighting the complex molecular network of MEIS2C/D in HCC pathogenesis. These results suggest that MEISC/D may serve as a potential novel therapeutic target for HCC.https://deepblue.lib.umich.edu/bitstream/2027.42/152244/1/13046_2019_Article_1417.pd
- …