32 research outputs found

    ImageNetVC: Zero-Shot Visual Commonsense Evaluation on 1000 ImageNet Categories

    Full text link
    Recently, Pretrained Language Models (PLMs) have been serving as general-purpose interfaces, posing a significant demand for comprehensive visual knowledge. However, it remains unclear how well current PLMs and their visually augmented counterparts (VaLMs) can master visual commonsense knowledge. To investigate this, we propose ImageNetVC, a fine-grained, human-annotated dataset specifically designed for zero-shot visual commonsense evaluation across 1,000 ImageNet categories. Utilizing ImageNetVC, we delve into the fundamental visual commonsense knowledge of both unimodal PLMs and VaLMs, uncovering the scaling law and the influence of the backbone model on VaLMs. Furthermore, we investigate the factors affecting the visual commonsense knowledge of large-scale models, providing insights into the development of language models enriched with visual commonsense knowledge. Our code and dataset are available at https://github.com/hemingkx/ImageNetVC

    Speculative Decoding: Exploiting Speculative Execution for Accelerating Seq2seq Generation

    Full text link
    We propose Speculative Decoding (SpecDec), for the first time ever, to formally study exploiting the idea of speculative execution to accelerate autoregressive (AR) decoding. Speculative Decoding has two innovations: Spec-Drafter -- an independent model specially optimized for efficient and accurate drafting -- and Spec-Verification -- a reliable method for verifying the drafted tokens efficiently in the decoding paradigm. Experimental results on various seq2seq tasks including machine translation and abstractive summarization show our approach can achieve around 5×5\times speedup for the popular Transformer architectures with comparable generation quality to beam search decoding, refreshing the impression that the draft-then-verify paradigm introduces only 1.4×1.4\times∌\sim2×2\times speedup. In addition to the remarkable speedup, we also demonstrate 3 additional advantages of SpecDec, revealing its practical value for accelerating generative models in real-world applications. Our models and codes are available at https://github.com/hemingkx/SpecDec.Comment: v1-v4\textbf{v1-v4} (Early 2022): Initially announced with the name "Generalized Aggressive Decoding"; v5\textbf{v5} (September 2022): Renamed to "Speculative Decoding" as the ICLR'23 submission (https://openreview.net/pdf?id=H-VlwsYvVi), marking the first time\textbf{the first time} "Speculative Decoding" has been publicly proposed. v6\textbf{v6}: EMNLP'23 Findings camera read

    Bi-Drop: Enhancing Fine-tuning Generalization via Synchronous sub-net Estimation and Optimization

    Full text link
    Pretrained language models have achieved remarkable success in natural language understanding. However, fine-tuning pretrained models on limited training data tends to overfit and thus diminish performance. This paper presents Bi-Drop, a fine-tuning strategy that selectively updates model parameters using gradients from various sub-nets dynamically generated by dropout. The sub-net estimation of Bi-Drop is performed in an in-batch manner, so it overcomes the problem of hysteresis in sub-net updating, which is possessed by previous methods that perform asynchronous sub-net estimation. Also, Bi-Drop needs only one mini-batch to estimate the sub-net so it achieves higher utility of training data. Experiments on the GLUE benchmark demonstrate that Bi-Drop consistently outperforms previous fine-tuning methods. Furthermore, empirical results also show that Bi-Drop exhibits excellent generalization ability and robustness for domain transfer, data imbalance, and low-resource scenarios.Comment: EMNLP 2023 Findings. Camera-ready version. Co-first authors with equal contribution

    The Phylogenetic Origin of oskar Coincided with the Origin of Maternally Provisioned Germ Plasm and Pole Cells at the Base of the Holometabola

    Get PDF
    The establishment of the germline is a critical, yet surprisingly evolutionarily labile, event in the development of sexually reproducing animals. In the fly Drosophila, germ cells acquire their fate early during development through the inheritance of the germ plasm, a specialized maternal cytoplasm localized at the posterior pole of the oocyte. The gene oskar (osk) is both necessary and sufficient for assembling this substance. Both maternal germ plasm and oskar are evolutionary novelties within the insects, as the germline is specified by zygotic induction in basally branching insects, and osk has until now only been detected in dipterans. In order to understand the origin of these evolutionary novelties, we used comparative genomics, parental RNAi, and gene expression analyses in multiple insect species. We have found that the origin of osk and its role in specifying the germline coincided with the innovation of maternal germ plasm and pole cells at the base of the holometabolous insects and that losses of osk are correlated with changes in germline determination strategies within the Holometabola. Our results indicate that the invention of the novel gene osk was a key innovation that allowed the transition from the ancestral late zygotic mode of germline induction to a maternally controlled establishment of the germline found in many holometabolous insect species. We propose that the ancestral role of osk was to connect an upstream network ancestrally involved in mRNA localization and translational control to a downstream regulatory network ancestrally involved in executing the germ cell program

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Real-Time and Quantitative Measurement of Crack-Tip Stress Intensity Factors Using Digital Holographic Interferometry

    No full text
    Detection of the crack in an object is a critical problem for the health monitoring of a transparent object. The real-time and quantitative measurement of the crack-tip stress intensity factor (SIF) remains an open issue. In this paper, an approach for real-time and quantitative measurement for the SIFs of a Mode I crack is presented based on digital holographic interferometry (DHI). A transmission digital holographic system is established to measure the phase difference of an object wave during loading. The expression to achieve the SIF from the phase difference is formulated. To enhance the accuracy of measurement, calibrated phase unwrapping based on least-squares and iteration and median filtering is applied to retrieve the actual phase from the noisy wrapped one. The SIFs of the Mode I crack in a transparent polymethyl methacrylate (PMMA) specimen are measured by this approach. The results are compared with the theoretical ones to demonstrate the feasibility of the proposed approach

    Preparation and Performance of a Fixed Bed Catalyst for the Oxidation of Sodium Mercaptides

    No full text
    The activated-carbon supported cobalt pthalocyanine as a fixed bed catalyst (CoPc/C) was prepared by impregnation method and its performance on the oxidation of sodium mercaptides in light oil sweetening was investigated. The FTIR, XRD, and SEM analysis indicated that the active component dispersed well on the carrier and the results of the TG analysis showed that CoPc/C has good thermostability. It was tested that the prepared catalyst has a high catalytic activity towards sodium mercaptides. The removal rate of n-C4H9SNa was up to 100 % and for t-C4H9SNa, was 87.5% at a reaction time of 30 min. With the reaction temperature raised from 20 °C to 60 °C at intervals of ten degrees, the oxidation rate increased obviously, especially in the first ten minutes. A kinetic model mainly related to the transfer process was supposed. The catalyst CoPc/C had a good anti-loss performance of the active component both in water and alkali liquor when used. © 2014 BCREC UNDIP. All rights reservedSubmitted: 20th June 2013; Revised: 1st March 2014; Accepted: 22nd March 2014[How to Cite: Heming, W., Xianshang, L., Lijun, Z., Yulu, Z., Daohong, X., (2014). Preparation and Performance of a Fixed Bed Catalyst for the Oxidation of Sodium Mercaptides. Bulletin of Chemical Reaction Engineering &amp; Catalysis, 9 (2): 87-92.(doi:10.9767/bcrec.9.2.5113.87-92)][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.5113.87-92] </p

    Preparation and Performance of a Fixed Bed Catalyst for the Oxidation of Sodium Mercaptides

    No full text
    The activated-carbon supported cobalt pthalocyanine as a fixed bed catalyst (CoPc/C) was prepared by impregnation method and its performance on the oxidation of sodium mercaptides in light oil sweetening was investigated. The FTIR, XRD, and SEM analysis indicated that the active component dispersed well on the carrier and the results of the TG analysis showed that CoPc/C has good thermostability. It was tested that the prepared catalyst has a high catalytic activity towards sodium mercaptides. The removal rate of n-C4H9SNa was up to 100 % and for t-C4H9SNa, was 87.5% at a reaction time of 30 min. With the reaction temperature raised from 20 °C to 60 °C at intervals of ten degrees, the oxidation rate increased obviously, especially in the first ten minutes. A kinetic model mainly related to the transfer process was supposed. The catalyst CoPc/C had a good anti-loss performance of the active component both in water and alkali liquor when used. © 2014 BCREC UNDIP. All rights reservedSubmitted: 20th June 2013; Revised: 1st March 2014; Accepted: 22nd March 2014[How to Cite: Heming, W., Xianshang, L., Lijun, Z., Yulu, Z., Daohong, X., (2014). Preparation and Performance of a Fixed Bed Catalyst for the Oxidation of Sodium Mercaptides. Bulletin of Chemical Reaction Engineering &amp; Catalysis, 9 (2): 87-92.(doi:10.9767/bcrec.9.2.5113.87-92)][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.5113.87-92] </p
    corecore