2 research outputs found

    High Precision Multi-parameter Weak Measurement with Hermite-Gaussian Pointer

    Full text link
    The weak value amplification technique has been proved useful for precision metrology in both theory and experiment. To explore the ultimate performance of weak value amplification for multi-parameter estimation, we investigate a general weak measurement formalism with assistance of high-order Hermite-Gaussian pointer and quantum Fisher information matrix. Theoretical analysis shows that the ultimate precision of our scheme is improved by a factor of square root of 2n+1, where n is the order of Hermite-Gaussian mode. Moreover, the parameters' estimation precision can approach the precision limit with maximum likelihood estimation method and homodyne method. We have also given a proof-of-principle experimental setup to validate the H-G pointer theory and explore its potential applications in precision metrology

    Ultrasensitive Measurement of Angular Rotations via Hermite-Gaussian Pointer

    Full text link
    Exploring high sensitivity on the measurement of angular rotations is an outstanding challenge in optics and metrology. In this work, we employ the mn-order Hermite-Gaussian beam in the weak measurement scheme with an angular rotation interaction, where the rotation information is taken by another HG mode state completely after the post-selection. By taking a projective measurement on the final light beam, the precision of angular rotation is improved by a factor of 2mn+m+n. For verification, we perform an optical experiment where the minimum detectable angular rotation improves 15\sqrt{15}-fold with HG55 mode over that of HG11 mode, and achieves a sub-microradian scale of the measurement precision. Our theoretical framework and experimental results not only provide a more practical and convenient scheme for ultrasensitive measurement of angular rotations, but also contribute to a wide range of applications in quantum metrology.Comment: 21 pages, 8 figures, 3 tables. Published in Photonics Researc
    corecore