1,700 research outputs found

    Recent Experimental Progress of Fractional Quantum Hall Effect: 5/2 Filling State and Graphene

    Full text link
    The phenomenon of fractional quantum Hall effect (FQHE) was first experimentally observed 33 years ago. FQHE involves strong Coulomb interactions and correlations among the electrons, which leads to quasiparticles with fractional elementary charge. Three decades later, the field of FQHE is still active with new discoveries and new technical developments. A significant portion of attention in FQHE has been dedicated to filling factor 5/2 state, for its unusual even denominator and possible application in topological quantum computation. Traditionally FQHE has been observed in high mobility GaAs heterostructure, but new materials such as graphene also open up a new area for FQHE. This review focuses on recent progress of FQHE at 5/2 state and FQHE in graphene.Comment: 17 pages, 13 figure

    Low-Temperature Conductivity of Weakly Interacting Quantum Spin Hall Edges in Strained-Layer InAs/GaInSb

    Full text link
    We report low-temperature transport measurements in strained InAs/Ga0.68In0.32Sb quantum wells, which supports time-reversal symmetry-protected helical edge states. The temperature and bias voltage dependence of the helical edge conductance for devices of various sizes are consistent with the theoretical expectation of a weakly interacting helical edge state. Moreover, we found that the magnetoresistance of the helical edge states is related to the edge interaction effect and the disorder strength.Comment: 20 pages, 7 figure

    Observation of spin-tensor induced topological phase transitions of triply degenerate points with a trapped ion

    Full text link
    Triply degenerate points (TDPs), which correspond to new types of topological semimetals, can support novel quasiparticles possessing effective integer spins while preserving Fermi statistics. Here by mapping the momentum space to the parameter space of a three-level system in a trapped ion, we experimentally explore the transitions between different types of TDPs driven by spin-tensor--momentum couplings. We observe the phase transitions between TDPs with different topological charges by measuring the Berry flux on a loop surrounding the gap-closing lines, and the jump of the Berry flux gives the jump of the topological charge (up to a 2Ï€2\pi factor) across the transitions. For the Berry flux measurement, we employ a new method by examining the geometric rotations of both spin vectors and tensors, which lead to a generalized solid angle equal to the Berry flux. The controllability of multi-level ion offers a versatile platform to study high-spin physics and our work paves the way to explore novel topological phenomena therein.Comment: 9 pages, 10 figure

    De-Pinning Transition of Bubble Phases in a High Landau Level

    Full text link
    While in the lowest Landau level the electron-electron interaction leads to the formation of the Wigner crystal, in higher Landau levels a solid phase with multiple electrons in a lattice site of crystal was predicted, which was called the bubble phase. Reentrant integer quantum Hall states are believed to be the insulating bubble phase pinned by disorder. We carry out nonlinear transport measurements on the reentrant states and study the de-pinning of the bubble phase, which is complementary to previous microwave measurements and provides unique information. In this study, conductivity is directly measured with Corbino geometry. Based on the threshold electric field of de-pinning, a phase diagram of the reentrant state is mapped. We discuss an interaction-driven topological phase transition between the integer quantum Hall state and the reentrant integer quantum Hall state.Comment: 11 pages, 3 figure

    Relations between near-field enhancements and Purcell factors in hybrid nanostructures of plasmonic antennas and dielectric cavities

    Full text link
    Strong near-field enhancements (NFEs) of nanophotonic structures are believed to be closely related to high Purcell factors (FP). Here, we theoretically show that the correlation is partially correct; the extinction cross section ({\sigma}) response is also critical in determining FP. The divergence between NFE and FP is especially pronounced in plasmonic-dielectric hybrid systems, where the plasmonic antenna supports dipolar plasmon modes and the dielectric cavity hosts Mie-like resonances. The cavity's enhanced-field environment can boost the antenna's NFEs, but the FP is not increased concurrently due to the larger effective {\sigma} that is intrinsic to the FP calculations. Interestingly, the peak FP for the coupled system can be predicted by using the NFE and {\sigma} responses. Furthermore, the limits for FP of coupled systems are considered; they are determined by the sum of the FP of a redshifted (or modified, if applicable) antenna and an individual cavity. This contrasts starkly with the behavior of NFE which is closely associated with the multiplicative effects of the NFEs provided by the antenna and the dielectric cavity. The differing behaviors of NFE and FP in hybrid cavities have varied impacts on relevant nanophotonic applications such as fluorescence, Raman scattering and enhanced light-matter interactions

    Observation of a Helical Luttinger-Liquid in InAs/GaSb Quantum Spin Hall Edges

    Full text link
    We report on the observation of a helical Luttinger-liquid in the edge of InAs/GaSb quantum spin Hall insulator, which shows characteristic suppression of conductance at low temperature and low bias voltage. Moreover, the conductance shows power-law behavior as a function of temperature and bias voltage. The results underscore the strong electron-electron interaction effect in transport of InAs/GaSb edge states. Because of the fact that the Fermi velocity of the edge modes is controlled by gates, the Luttinger parameter can be fine tuned. Realization of a tunable Luttinger-liquid offers a one-dimensional model system for future studies of predicted correlation effects.Comment: 23 pages, 9 figure
    • …
    corecore