1,048 research outputs found
Danshen-Chuanxiong-Honghua Ameliorates Cerebral Impairment and Improves Spatial Cognitive Deficits after Transient Focal Ischemia and Identification of Active Compounds.
Previously, we only apply a traditional Chinese medicine (TCM) Danshen-Chuanxiong-Honghua (DCH) for cardioprotection via anti-inflammation in rats of acute myocardial infarction by occluding coronary artery. Presently, we select not only DCH but also its main absorbed compound ferulic acid (FA) for cerebra protection via similar action of mechanism above in animals of the transient middle cerebral artery occlusion (tMCAO). We investigated whether oral administration of DCH and FA could ameliorate MCAO-induced brain lesions in animals. By using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we analyzed four compounds, including tanshinol, salvianolic acid B, hydroxysafflor yellow A and especially FA as the putative active components of DCH extract in the plasma, cerebrospinal fluid and injured hippocampus of rats with MCAO. In our study, it was assumed that FA played a similar neuroprotective role to DCH. We found that oral pretreatment with DCH (10 or 20 g/kg) and FA (100 mg/kg) improved neurological function and alleviated the infarct volume as well as brain edema in a dose-dependent manner. These changes were accompanied by improved ischemia-induced apoptosis and decreased the inflammatory response. Additionally, chronic treatment with DCH reversed MCAO-induced spatial cognitive deficits in a manner associated with enhanced neurogenesis and increased the expression of brain-derived neurotrophic factor in lesions of the hippocampus. These findings suggest that DCH has the ability to recover cognitive impairment and offer neuroprotection against cerebral ischemic injury via inhibiting microenvironmental inflammation and triggering of neurogenesis in the hippocampus. FA could be one of the potential active compounds
Substrate entering and product leaving trajectories predict an engulfing dynamic for the major conformational change of the β-lactam acylase
It is still a major challenge to acquire insight into the conformational changes between the ground state and the transition state of an enzyme, although conformational fluctuation within interconverting conformers has been widely investigated (1-4). Here, we utilize different enzymatic reactions in b-lactam acylase to figure out the substrate/product trajectories in the enzyme, thereby probing the overall conformational changes in transition state. First, an auto-proteolytic intermediate of cephalosporin acylase (EC 3.5.1.11) with partial spacer segment was identified. As a final proteolytic step, the deletion of this spacer segment was revealed to be a first-order reaction, suggesting an intramolecular Ntn mechanism for the auto-proteolysis. Accordingly, the different proteolytic sites in the acylase precursor indicate a substrate entering pathway along the spacer peptide. Second, bromoacyl-7ACA can interact with penicillin G acylase (EC 3.5.1.11) in two distinguish aspects, to be hydrolyzed as a substrate analogue and to affinity alkylate the conserved Trpb4 as a product analogue. The kinetic correlation between these two reactions suggests a channel opening from Serb1 to Trpb4, responsible for the main product leaving. These two reaction trajectories relaying at the active centre, together with the crystal structures (5-10), predict an engulfing dynamic involving pocket constriction and channel opening
Influence of unsymmetrical periodicity on extraordinary transmission through periodic arrays of subwavelength holes
Quadrate hole array is explored to study the influence of unsymmetrical
periodicity on extraordinary optical transmission through periodic arrays of
subwavelength holes. It is found that the transmission efficiency of light and
the ratio between transmission efficiencies of horizontal and vertical
polarized light can be continuously tuned by rotating the quadrate hole array.
We can calculate out the transmission spectra (including the heights and
locations of peaks) for any rotation angle with a simple theoretical
model.Comment: 6 pages, 5 figure
Mutational disruption of a conserved disulfide bond in muscarinic acetylcholine receptors attenuates positive homotropic cooperativity between multiple allosteric sites and has subtype-dependent effects on the affinities of muscarinic allosteric ligands
ABSTRACT The 2nd outer loop (o2) of muscarinic acetylcholine receptors (mAChRs) contains a highly conserved cysteine residue that is believed to participate in a disulfide bond and is flanked on either side by epitopes that are critical to the binding of many muscarinic allosteric modulators. We determined the allosteric binding parameters of the modulators gallamine, W84, and tetrahydroaminoacridine (THA) at M 2 and M 3 mAChRs in which these cysteine residues had been mutated to alanines. THA is known to bind to mAChRs with a strong positive homotropic cooperativity (a Hill slope of approximately 2) that implies that it must interact with multiple allosteric sites. The disulfide cysteine mutations in M 2 receptors reduced the allosteric potencies of the tested modulators as if the critical adjacent residue (Tyr177) itself had been mutated. However, in M 3 receptors, the disulfide cysteine mutations had no effect on the potencies of gallamine or W84 and even increased the potency of THA. It was most interesting that the strong, positive, homotropic interactions of THA at both M 2 and M 3 receptors were markedly reduced by the cysteine mutations. In addition, gallamine also displayed positive homotropic cooperativity in its interactions with M 3 receptors (but not M 2 receptors), and this cooperativity was not evident in the cysteine mutants. Thus, it seems that these cysteine residues play a role in linking cooperating allosteric sites, although it is not currently possible to say whether these multiple sites lie within one receptor or on two linked receptors of a dimer or higher order oligomer. A growing number of G protein-coupled receptors (GPCRs) are known to possess extracellular allosteric binding sites that are topographically distinct from, but conformationally linked to, the orthosteric binding site for the endogenous agonist and its competitive ligands ABBREVIATIONS: GPCR, G protein-coupled receptor; NMS, N-methyl scopolamine; W84, hexamethylene-bis-[3-phthalimidopropyl]ammonium) dibromide; THA, tetrahydroaminoacridine; o2, the second outer (extracellular) loop of the receptor; o3, the third outer (extracellular) loop of the receptor; mAChR, muscarinic acetylcholine receptor; HA, hemagglutinin; PB, sodium/potassium/phosphate buffer; h, human; r, rat; rM 3 Ј, N-terminal-modified rat M 3 receptor
- …