384 research outputs found

    Study on Semantic Contrast Evaluation Based on Vector and Raster Data Patch Generalization

    Get PDF
    We used buffer superposition, Delaunay triangulation skeleton line, and other methods to achieve the aggregation and amalgamation of the vector data, adopted the method of combining mathematical morphology and cellular automata to achieve the patch generalization of the raster data, and selected the two evaluation elements (namely, semantic consistency and semantic completeness) from the semantic perspective to conduct the contrast evaluation study on the generalization results from the two levels, respectively, namely, land type and map. The study results show that: (1) before and after the generalization, it is easier for the vector data to guarantee the area balance of the patch; the raster data’s aggregation of the small patch is more obvious. (2) Analyzing from the scale of the land type, most of the land use types of the two kinds of generalization result’s semantic consistency is above 0.6; the semantic completeness of all types of land use in raster data is relatively low. (3) Analyzing from the scale of map, the semantic consistency of the generalization results for the two kinds of data is close to 1, while, in the aspect of semantic completeness, the land type deletion situation of the raster data generalization result is more serious

    A Multitarget Land Use Change Simulation Model Based on Cellular Automata and Its Application

    Get PDF
    Based on the analysis of the existing land use change simulation model, combined with macroland use change driving factors and microlocal land use competition, and through the application of Python language integrated technical approaches such as CA, GIS, AHP, and Markov, a multitarget land use change simulation model based on cellular automata(CA) is established. This model was applied to conduct scenario simulation of land use/cover change of the Jinzhou New District, based on 1:10000 map scale land use, planning, topography, statistics, and other data collected in the year of 1988, 2003, and 2012. The simulation results indicate the following: (1) this model can simulate the mutual transformation of multiple land use types in a relatively satisfactory way; it takes land use system as a whole and simultaneously takes the land use demand in the macrolevel and the land use suitability in the local scale into account; and (2) the simulation accuracy of the model reaches 72%, presenting higher creditability. The model is capable of providing auxiliary decision-making support for coastal regions with the analysis of the land use change driving mechanism, prediction of land use change tendencies, and establishment of land resource sustainable utilization policies

    Structures and Anomalies of Water

    Full text link
    Introduction of the principles of the asymmetrical, short-range O:H-O coupled oscillater pair and the basic rule for water ice, which reconciles the structure and anomalies of water ice.Comment: 20 pages. In Chines

    Tomographic measurements on superconducting qubit states

    Full text link
    We propose an approach to reconstruct any superconducting charge qubit state by using quantum state tomography. This procedure requires a series of measurements on a large enough number of identically prepared copies of the quantum system. The experimental feasibility of this procedure is explained and the time scales for different quantum operations are estimated according to experimentally accessible parameters. Based on the state tomography, we also investigate the possibility of the process tomography.Comment: 12 pages, 4 figure

    Assessment of causal associations between obesity and peripheral artery disease: a bidirectional Mendelian randomization study

    Get PDF
    BackgroundSeveral observational studies have documented a potential link between obesity and peripheral artery disease (PAD), although conflicting findings exist. The causal relationship between obesity and PAD continues to be a subject of ongoing debate in the medical community.ObjectivesIn this study, we employed a bidirectional Mendelian randomization (MR) analysis to explore the potential causal relationship between obesity and the risk of PAD.MethodsTo investigate these causal relationships, we conducted bidirectional MR analysis using publicly available genome-wide association study (GWAS) data. Effect estimates were calculated using the random-effects inverse variance-weighted (IVW) method.ResultsWe identified eight independent single nucleotide polymorphisms (SNPs) associated with obesity in 218,735 samples involving 16,380,465 SNPs, all of which met the genome-wide significance threshold (p < 5 × 10−⁸). The IVW analysis indicates a significant positive association between genetic obesity and multiple datasets with PAD as the outcome: Queue-1 (GWAS ID: finn-b-I9_PAD) (OR = 1.138, 95% CI: 1.027–1.261, p = 0.013), Queue-2 (GWAS ID: bbj-a-144) (OR = 1.190, 95% CI: 1.019–1.390, p = 0.028), Queue-3 (GWAS ID: ebi-a-GCST90018670) (OR = 1.174, 95% CI: 1.014–1.360, p = 0.032), and Queue-4 (GWAS ID: ebi-a-GCST90018890) (OR = 1.194, 95% CI: 1.099–1.296, p < 0.001). However, we did not observe a significant genetic-level association between obesity and PAD for Queue-5 (GWAS ID: ukb-d-I9_PAD) (OR = 1.001, 95% CI: 1.000–1.002, p = 0.071). Furthermore, we conducted a reverse causal MR analysis to explore the potential reverse causal relationship between obesity and PAD. This comprehensive analysis did not provide evidence of a reverse causal association between these two factors.ConclusionsIn summary, our study offers genetic evidence suggesting a possible causal link between obesity and PAD. While we did not find evidence supporting the “obesity paradox”, prudent weight management remains crucial, as lower weight does not necessarily guarantee better outcomes. As with any study, caution is required in interpreting the findings. Further research is essential to assess the clinical relevance of weight in preventing PAD, which could inform the development of more precise intervention strategies

    Transiently Impaired Endothelial Function During Thyroid Hormone Withdrawal in Differentiated Thyroid Cancer Patients

    Get PDF
    PURPOSE: Endothelial dysfunction, which was associated with chronic hypothyroidism, was an early event in atherosclerosis. Whether short-term hypothyroidism following thyroxine withdrawal during radioiodine (RAI) therapy was associated with endothelial dysfunction in patients with differentiated thyroid cancer (DTC) was unclear. Aim of the study was to assess whether short-term hypothyroidism could impair endothelial function and the accompanied metabolic changes in the whole process of RAI therapy. METHODS: We recruited fifty-one patients who underwent total thyroidectomy surgery and would accept RAI therapy for DTC. We analyzed thyroid function, endothelial function and serum lipids levels of the patients at three time points: the day before thyroxine withdrawal(P RESULTS: We analyzed the changes of FMD, thyroid function and lipids at three time points. FMD(P CONCLUSION: Endothelial function was transiently impaired in DTC patients at short-term hypothyroidism state during the RAI therapy, and immediately returned to the initial state after restoring TSH suppression therapy

    Mesaconitine

    Get PDF
    The title compound, (1α,3α,6α,14α,15α,16β)-3,8,13,14,15-penta­hydr­oxy-1,6,16-trimeth­oxy-4-methoxy­methyl-20-methyl­acon­itan-8,14-diyl 8-acetate 14-benzoate, C33H45NO11, a C19 diterpenoid alkaloid, obtained from the roots of Aconitum kusnezoffii, has been crystallographically characterized in this study. Rings A, B and E have chair conformations, rings C and F display envelope conformations, and ring D adopts a boat conformation. There are inter- and intra­molecular O—H⋯O hydrogen bonds, the latter resulting in the formation of a non-planar seven-membered ring. The inter­molecular inter­actions link the mol­ecules into a two-dimensional network

    The Chinese Open Science Network (COSN): Building an Open Science Community From Scratch

    Get PDF
    Open Science is becoming a mainstream scientific ideology in psychology and related fields. However, researchers, especially early-career researchers (ECRs) in developing countries, are facing significant hurdles in engaging in Open Science and moving it forward. In China, various societal and cultural factors discourage ECRs from participating in Open Science, such as the lack of dedicated communication channels and the norm of modesty. To make the voice of Open Science heard by Chinese-speaking ECRs and scholars at large, the Chinese Open Science Network (COSN) was initiated in 2016. With its core values being grassroots-oriented, diversity, and inclusivity, COSN has grown from a small Open Science interest group to a recognized network both in the Chinese-speaking research community and the international Open Science community. So far, COSN has organized three in-person workshops, 12 tutorials, 48 talks, and 55 journal club sessions and translated 15 Open Science-related articles and blogs from English to Chinese. Currently, the main social media account of COSN (i.e., the WeChat Official Account) has more than 23,000 subscribers, and more than 1,000 researchers/students actively participate in the discussions on Open Science. In this article, we share our experience in building such a network to encourage ECRs in developing countries to start their own Open Science initiatives and engage in the global Open Science movement. We foresee great collaborative efforts of COSN together with all other local and international networks to further accelerate the Open Science movement

    Dynamics of entanglement for coherent excitonic states in a system of two coupled quantum dots and cavity QED

    Get PDF
    The dynamics of the entanglement for coherent excitonic states in the system of two coupled large semiconductor quantum dots (R/aB1R/a_{B}\gg 1) mediated by a single-mode cavity field is investigated. Maximally entangled coherent excitonic states can be generated by cavity field initially prepared in odd coherent state. The entanglement of the excitonic coherent states between two dots reaches maximum when no photon is detected in the cavity. The effects of the zero-temperature environment on the entanglement of excitonic coherent state are also studied using the concurrence for two subsystems of the excitonsComment: 7 pages, 6 figure
    corecore