14 research outputs found

    Spin Conductance in one-dimensional Spin-Phonon systems

    Full text link
    We present results for the spin conductance of the one dimensional spin-1/2 Heisenberg and XY model coupled to phonons. We apply an approach based on the Stochastic Series Expansion (Quantum Monte Carlo) method to evaluate the conductance for a variety of phonon dispersions and values of spin-phonon coupling. From our numerical simulations and analytical arguments, we derive several scaling laws for the conductance.Comment: 7 pages, 9 figure

    Thermal conductivity of anisotropic spin - 1/2 two leg ladder:Green's function approach

    Full text link
    We study the thermal transport of a spin-1/2 two leg antiferromagnetic ladder in the direction of legs. The possible effect of spin-orbit coupling and crystalline electric field are investigated in terms of anisotropies in the Heisenberg interactions on both leg and rung couplings. The original spin ladder is mapped to a bosonic model via a bond-operator transformation where an infinite hard-core repulsion is imposed to constrain one boson occupation per site. The Green's function approach is applied to obtain the energy spectrum of quasi-particle excitations responsible for thermal transport. The thermal conductivity is found to be monotonically decreasing with temperature due to increased scattering among triplet excitations at higher temperatures. A tiny dependence of thermal transport on the anisotropy in the leg direction at low temperatures is observed in contrast to the strong one on the anisotropy along the rung direction, due to the direct effect of the triplet density. Our results reach asymptotically the ballistic regime of the spin - 1/2 Heisenberg chain and compare favorably well with exact diagonalization data

    Quantum Monte Carlo study of the 3D attractive Hubbard model

    Full text link
    We study the three-dimensional (3D) attractive Hubbard model by means of the Determinant Quantum Monte Carlo method. This model is a prototype for the description of the smooth crossover between BCS superconductivity and Bose-Einstein condensation. By detailed finite-size scaling we extract the finite-temperature phase diagram of the model. In particular, we interpret the observed behavior according to a scenario of two fundamental temperature scales; T* associated with Cooper pair formation and Tc with condensation (giving rise to long-range superconducting order). Our results also indicate the presence of a recently conjectured phase transition hidden by the superconducting state. A comparison with the 2D case is briefly discussed, given its relevance for the physics of high-Tc cuprate superconductors.Comment: 4 pages, 4 Postscript figure

    Dynamics of quasiparticles in the two-dimensional Hubbard model

    No full text

    Reactive Hall and Edelstein effects in a tight-binding model with spin-orbit coupling

    No full text
    The reactive Hall constant RH, described by reactive (nondissipative) conductivities, is analyzed within linear response theory in the presence of spin-orbit interaction.Within a two-dimensional tight-binding model the effect of Van Hove singularities is studied. Along the same line a formulation of the Edelstein constant is proposed and studied as a function of coupling parameters and fermion filling.</p
    corecore