137 research outputs found
NrCAM modulates sonic hedgehog signalling by controlling smoothened translocation in the cilium
Objective: Cerebellar development involves a spurt of proliferation in external granule layer (EGL) in response to shh, causing granule neuron precursors (GNPs) to proliferate. These cells subsequently differentiate into granule neurons in the inner granule layer (IGL). F3, a CNTN family molecule, can interact with NrCAM to switch GNPs from proliferation to differentiation. We aim to identify the role of NrCAM in the sonic hedgehog response in GNPs.
Methods: GNPs were extracted from wildtype and NrCAM mutant P5 cerebella using Percoll gradient centrifugation. Proliferation response to shh was measured using EdU in presence/absence of F3-Fc. GNPs treated with shh/SAG were stained with antibodies against Arl13b and smo to look for differences in cilia size and smo occupancy after different treatment times.
Results: NrCAM-/- and wildtype GNPs both proliferated equally in response to shh. F3 was found to block the proliferation response in wildtype but not in NrCAM-/- GNPs. F3 also failed to affect proliferation in SmoA1 GNPs with a constitutively active smo suggesting that the F3-NrCAM mediated block lay upstream of Smo. NrCAM was detected in wildtype cilia and Smo localization was affected in NrCAM-/- GNPs. No differences in cilia length were observed.
Conclusion: Our results suggest that NrCAM affects shh-mediated proliferation by controlling smo movement into the cilium
Extracellular Matrix Oxidised by the Granulocyte Oxidants Hypochlorous and Hypobromous Acid Reduces Lung Fibroblast Adhesion and Proliferation In Vitro.
Chronic airway inflammation and oxidative stress play crucial roles in the pathogenesis of chronic inflammatory lung diseases, with airway inflammation being a key driving mechanism of oxidative stress in the lungs. Inflammatory responses in the lungs activate neutrophils and/or eosinophils, leading to the generation of hypohalous acids (HOX). These HOX oxidants can damage the extracellular matrix (ECM) structure and may influence cell-ECM interactions. The ECM of the lung provides structural, mechanical, and biochemical support for cells and determines the airway structure. One of the critical cells in chronic respiratory disease is the fibroblast. Thus, we hypothesised that primary human lung fibroblasts (PHLF) exposed to an oxidised cell-derived ECM will result in functional changes to the PHLF. Here, we show that PHLF adhesion, proliferation, and inflammatory cytokine secretion is affected by exposure to HOX-induced oxidisation of the cell-derived ECM. Furthermore, we investigated the impact on fibroblast function from the presence of haloamines in the ECM. Haloamines are chemical by-products of HOX and, like the HOX, haloamines can also modify the ECM. In conclusion, this study revealed that oxidising the cell-derived ECM might contribute to functional changes in PHLF, a key mechanism behind the pathogenesis of inflammatory lung diseases
Dietary ω-6 polyunsaturated fatty acid arachidonic acid increases inflammation, but inhibits ECM protein expression in COPD
© 2018 The Author(s). Background: The obesity paradox in COPD describes protective effects of obesity on lung pathology and inflammation. However, the underlying relationships between obesity, diet and disease outcomes in COPD are not fully understood. In this study we measured the response to dietary fatty acids upon markers of inflammation and remodelling in human lung cells from people with and without COPD. Methods: Pulmonary fibroblasts were challenged with ω-3 polyunsaturated fatty acids (PUFAs), ω-6 PUFAs, saturated fatty acids (SFAs) or the obesity-associated cytokine TNFα. After 48-72 h release of the pro-inflammatory cytokines interleukin (IL)-6 and CXCL8 was measured using ELISA and mRNA expression and deposition of the extracellular matrix (ECM) proteins fibronectin, type I collagen, tenascin and perlecan were measured using qPCR or ECM ELISA, respectively. Results: Challenge with the ω-6 PUFA arachidonic acid (AA), but not ω-3 PUFAs or SFAs, resulted in increased IL-6 and CXCL8 release from fibroblasts, however IL-6 and CXCL8 release was reduced in COPD (n = 19) compared to non-COPD (n = 36). AA-induced cytokine release was partially mediated by downstream mediators of cyclooxygenase (COX)-2 in both COPD and non-COPD. In comparison, TNFα-induced IL-6 and CXCL8 release was similar in COPD and non-COPD, indicating a specific interaction of AA in COPD. In patients with or without COPD, regression analysis revealed no relationship between BMI and cytokine release. In addition, AA, but not SFAs or ω-3 PUFAs reduced the basal deposition of fibronectin, type I collagen, tenascin and perlecan into the ECM in COPD fibroblasts. In non-COPD fibroblasts, AA-challenge decreased basal deposition of type I collagen and perlecan, but not fibronectin and tenascin. Conclusions: This study shows that AA has disease-specific effects on inflammation and ECM protein deposition. The impaired response to AA in COPD might in part explain why obesity appears to have less detrimental effects in COPD, compared to other lung diseases
Dietary fatty acids amplify inflammatory responses to infection through p38 MAPK signaling
Copyright © 2019 by the American Thoracic Society. Obesity is an important risk factor for severe asthma exacerbations, which are mainly caused by respiratory infections. Dietary fatty acids, which are increased systemically in obese patients and are further increased after high-fat meals, affect the innate immune system and may contribute to dysfunctional immune responses to respiratory infection. In this study we investigated the effects of dietary fatty acids on immune responses to respiratory infection in pulmonary fibroblasts and a bronchial epithelial cell line (BEAS-2B). Cells were challenged with BSA-conjugated fatty acids (v-6 polyunsaturated fatty acids [PUFAs], v-3 PUFAs, or saturated fatty acids [SFAs]) 1/2 the viral mimic polyinosinic:polycytidylic acid (poly[I:C]) or bacterial compound lipoteichoic acid (LTA), and release of proinflammatory cytokines was measured. In both cell types, challenge with arachidonic acid (AA) (v-6 PUFA) and poly(I:C) or LTA led to substantially greater IL-6 and CXCL8 release than either challenge alone, demonstrating synergy. In epithelial cells, palmitic acid (SFA) combined with poly(I:C) also led to greater IL-6 release. The underlying signaling pathways of AA and poly(I:C)- or LTA-induced cytokine release were examined using specific signaling inhibitors and IB. Cytokine production in pulmonary fibroblasts was prostaglandin dependent, and synergistic upregulation occurred via p38 mitogen-activated protein kinase signaling, whereas cytokine production in bronchial epithelial cell lines was mainly mediated through JNK and p38 mitogen-activated protein kinase signaling. We confirmed these findings using rhinovirus infection, demonstrating that AA enhances rhinovirus-induced cytokine release. This study suggests that during respiratory infection, increased levels of dietary v-6 PUFAs and SFAs may lead to more severe airway inflammation and may contribute to and/or increase the severity of asthma exacerbations
Airway smooth muscle cells from severe asthma patients with fixed airflow obstruction are responsive to steroid and bronchodilator treatment in vitro
Asthma is characterised by recurrent symptoms associated with variable airflow obstruction and airway hyperresponsiveness, all of which are improved with combination inhaled corticosteroid (ICS)/long-acting β-agonist (LABA) treatment in mild-to-moderate asthma [1]. A proportion of patients however develop fixed airflow obstruction (FAO), despite optimised treatment. FAO is prevalent in up to 60% of patients with severe asthma and is associated with a more rapid decline in lung function and increased symptoms [2]. The underlying mechanisms of FAO in asthma are poorly understood; therefore, development of novel treatment strategies remains a challenge.
Airway smooth muscle cells (ASMCs) are the major effector cells of bronchoconstriction in asthma and also contribute to the inflammatory process by secreting pro-inflammatory cytokines and chemokines. Therefore, ASMCs are a major target of both β2-agonist and ICS treatment [3]. Although several studies have suggested that steroid signalling [4] or β2-adrenoceptor (β2AR) signalling may be abnormally regulated in severe asthma [5], it remains unknown whether impaired airway smooth muscle corticosteroid and/or β2-agonist response may contribute to the development of FAO. The aim of this study was to investigate whether primary human ASMCs obtained from severe asthma patients with FAO differ in their response to β2-agonists and corticosteroids compared with asthma patients without FAO and healthy controls. We hypothesised that ASMCs from asthma patients with FAO are less responsive to corticosteroid and β2-agonist treatment than those from patients without FA
Apoptosis signal-regulating kinase 1 inhibition attenuates human airway smooth muscle growth and migration in chronic obstructive pulmonary disease
© 2018 The Author(s). Increased airway smooth muscle (ASM) mass is observed in chronic obstructive pulmonary disease (COPD), which is correlated with disease severity and negatively affects lung function in these patients. Thus, there is clear unmet clinical need for finding new therapies which can target airway remodeling and disease progression in COPD. Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) activated by various stress stimuli, including reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, and lipopolysaccharide (LPS) and is known to regulate cell proliferation. ASM cells from COPD patients are hyperproliferative to mitogens in vitro. However, the role of ASK1 in ASM growth is not established. Here, we aim to determine the effects of ASK1 inhibition on ASM growth and pro-mitogenic signaling using ASM cells from COPD patients. We found greater expression of ASK1 in ASM bundles of COPD lung when compared with non-COPD. Pre-treatment of ASM cells with highly selective ASK1 inhibitor, TC ASK 10 resulted in a dose-dependent reduction in mitogen (FBS, PDGF, and EGF; 72 h)-induced ASM growth as measured by CyQUANT assay. Further, molecular targetting of ASK1 using siRNA in ASM cells prevented mitogen-induced cell growth. In addition, to anti-mitogenic potential, ASK1 inhibitor also prevented TGFβ1-induced migration of ASM cells in vitro. Immunoblotting revealed that anti-mitogenic effects are mediated by C-Jun N-terminal kinase (JNK) and p38MAP kinase-signaling pathways as evident by reduced phosphorylation of downstream effectors JNK1/2 and p38MAP kinases, respectively, with no effect on extracellular signal-regulated kinase (ERK) 1/2 (ERK1/2). Collectively, these findings establish the anti-mitogenic effect of ASK1 inhibition and identify a novel pathway that can be targetted to reduce or prevent excessive ASM mass in COPD
- …