35,305 research outputs found
FReLU: Flexible Rectified Linear Units for Improving Convolutional Neural Networks
Rectified linear unit (ReLU) is a widely used activation function for deep
convolutional neural networks. However, because of the zero-hard rectification,
ReLU networks miss the benefits from negative values. In this paper, we propose
a novel activation function called \emph{flexible rectified linear unit
(FReLU)} to further explore the effects of negative values. By redesigning the
rectified point of ReLU as a learnable parameter, FReLU expands the states of
the activation output. When the network is successfully trained, FReLU tends to
converge to a negative value, which improves the expressiveness and thus the
performance. Furthermore, FReLU is designed to be simple and effective without
exponential functions to maintain low cost computation. For being able to
easily used in various network architectures, FReLU does not rely on strict
assumptions by self-adaption. We evaluate FReLU on three standard image
classification datasets, including CIFAR-10, CIFAR-100, and ImageNet.
Experimental results show that the proposed method achieves fast convergence
and higher performances on both plain and residual networks
Energy Efficient Coordinated Beamforming for Multi-cell MISO Systems
In this paper, we investigate the optimal energy efficient coordinated
beamforming in multi-cell multiple-input single-output (MISO) systems with
multiple-antenna base stations (BS) and single-antenna mobile stations
(MS), where each BS sends information to its own intended MS with cooperatively
designed transmit beamforming. We assume single user detection at the MS by
treating the interference as noise. By taking into account a realistic power
model at the BS, we characterize the Pareto boundary of the achievable energy
efficiency (EE) region of the links, where the EE of each link is defined
as the achievable data rate at the MS divided by the total power consumption at
the BS. Since the EE of each link is non-cancave (which is a non-concave
function over an affine function), characterizing this boundary is difficult.
To meet this challenge, we relate this multi-cell MISO system to cognitive
radio (CR) MISO channels by applying the concept of interference temperature
(IT), and accordingly transform the EE boundary characterization problem into a
set of fractional concave programming problems. Then, we apply the fractional
concave programming technique to solve these fractional concave problems, and
correspondingly give a parametrization for the EE boundary in terms of IT
levels. Based on this characterization, we further present a decentralized
algorithm to implement the multi-cell coordinated beamforming, which is shown
by simulations to achieve the EE Pareto boundary.Comment: 6 pages, 2 figures, to be presented in IEEE GLOBECOM 201
An Energy Efficient Semi-static Power Control and Link Adaptation Scheme in UMTS HSDPA
High speed downlink packet access (HSDPA) has been successfully applied in
commercial systems and improves user experience significantly. However, it
incurs substantial energy consumption. In this paper, we address this issue by
proposing a novel energy efficient semi-static power control and link
adaptation scheme in HSDPA. Through estimating the EE under different
modulation and coding schemes (MCSs) and corresponding transmit power, the
proposed scheme can determine the most energy efficient MCS level and transmit
power at the Node B. And then the Node B configure the optimal MCS level and
transmit power. In order to decrease the signaling overhead caused by the
configuration, a dual trigger mechanism is employed. After that, we extend the
proposed scheme to the multiple input multiple output (MIMO) scenarios.
Simulation results confirm the significant EE improvement of our proposed
scheme. Finally, we give a discussion on the potential EE gain and challenge of
the energy efficient mode switching between single input multiple output (SIMO)
and MIMO configuration in HSDPA.Comment: 9 pages, 11 figures, accepted in EURASIP Journal on Wireless
Communications and Networking, special issue on Green Radi
How to Fine-Tune BERT for Text Classification?
Language model pre-training has proven to be useful in learning universal
language representations. As a state-of-the-art language model pre-training
model, BERT (Bidirectional Encoder Representations from Transformers) has
achieved amazing results in many language understanding tasks. In this paper,
we conduct exhaustive experiments to investigate different fine-tuning methods
of BERT on text classification task and provide a general solution for BERT
fine-tuning. Finally, the proposed solution obtains new state-of-the-art
results on eight widely-studied text classification datasets
- …