24,426 research outputs found
Many Hard Examples in Exact Phase Transitions with Application to Generating Hard Satisfiable Instances
This paper first analyzes the resolution complexity of two random CSP models
(i.e. Model RB/RD) for which we can establish the existence of phase
transitions and identify the threshold points exactly. By encoding CSPs into
CNF formulas, it is proved that almost all instances of Model RB/RD have no
tree-like resolution proofs of less than exponential size. Thus, we not only
introduce new families of CNF formulas hard for resolution, which is a central
task of Proof-Complexity theory, but also propose models with both many hard
instances and exact phase transitions. Then, the implications of such models
are addressed. It is shown both theoretically and experimentally that an
application of Model RB/RD might be in the generation of hard satisfiable
instances, which is not only of practical importance but also related to some
open problems in cryptography such as generating one-way functions.
Subsequently, a further theoretical support for the generation method is shown
by establishing exponential lower bounds on the complexity of solving random
satisfiable and forced satisfiable instances of RB/RD near the threshold.
Finally, conclusions are presented, as well as a detailed comparison of Model
RB/RD with the Hamiltonian cycle problem and random 3-SAT, which, respectively,
exhibit three different kinds of phase transition behavior in NP-complete
problems.Comment: 19 pages, corrected mistakes in Theorems 5 and
Extroverts Tweet Differently from Introverts in Weibo
Being dominant factors driving the human actions, personalities can be
excellent indicators in predicting the offline and online behavior of different
individuals. However, because of the great expense and inevitable subjectivity
in questionnaires and surveys, it is challenging for conventional studies to
explore the connection between personality and behavior and gain insights in
the context of large amount individuals. Considering the more and more
important role of the online social media in daily communications, we argue
that the footprint of massive individuals, like tweets in Weibo, can be the
inspiring proxy to infer the personality and further understand its functions
in shaping the online human behavior. In this study, a map from self-reports of
personalities to online profiles of 293 active users in Weibo is established to
train a competent machine learning model, which then successfully identifies
over 7,000 users as extroverts or introverts. Systematical comparisons from
perspectives of tempo-spatial patterns, online activities, emotion expressions
and attitudes to virtual honor surprisingly disclose that the extrovert indeed
behaves differently from the introvert in Weibo. Our findings provide solid
evidence to justify the methodology of employing machine learning to
objectively study personalities of massive individuals and shed lights on
applications of probing personalities and corresponding behaviors solely
through online profiles.Comment: Datasets of this study can be freely downloaded through:
https://doi.org/10.6084/m9.figshare.4765150.v
- …