5 research outputs found

    RoSAS: Deep Semi-Supervised Anomaly Detection with Contamination-Resilient Continuous Supervision

    Full text link
    Semi-supervised anomaly detection methods leverage a few anomaly examples to yield drastically improved performance compared to unsupervised models. However, they still suffer from two limitations: 1) unlabeled anomalies (i.e., anomaly contamination) may mislead the learning process when all the unlabeled data are employed as inliers for model training; 2) only discrete supervision information (such as binary or ordinal data labels) is exploited, which leads to suboptimal learning of anomaly scores that essentially take on a continuous distribution. Therefore, this paper proposes a novel semi-supervised anomaly detection method, which devises \textit{contamination-resilient continuous supervisory signals}. Specifically, we propose a mass interpolation method to diffuse the abnormality of labeled anomalies, thereby creating new data samples labeled with continuous abnormal degrees. Meanwhile, the contaminated area can be covered by new data samples generated via combinations of data with correct labels. A feature learning-based objective is added to serve as an optimization constraint to regularize the network and further enhance the robustness w.r.t. anomaly contamination. Extensive experiments on 11 real-world datasets show that our approach significantly outperforms state-of-the-art competitors by 20%-30% in AUC-PR and obtains more robust and superior performance in settings with different anomaly contamination levels and varying numbers of labeled anomalies. The source code is available at https://github.com/xuhongzuo/rosas/.Comment: Accepted by Information Processing and Management (IP&M

    Deep Isolation Forest for Anomaly Detection

    Full text link
    Isolation forest (iForest) has been emerging as arguably the most popular anomaly detector in recent years. It iteratively performs axis-parallel data space partition in a tree structure to isolate deviated data objects from the other data, with the isolation difficulty of the objects defined as anomaly scores. iForest shows effective performance across popular dataset benchmarks, but its axis-parallel-based linear data partition is ineffective in handling hard anomalies in high-dimensional/non-linear-separable data space, and even worse, it leads to a notorious algorithmic bias that assigns unexpectedly large anomaly scores to artefact regions. There have been several extensions of iForest, but they still focus on linear data partition, failing to effectively isolate those hard anomalies. This paper introduces a novel extension of iForest, deep isolation forest. Our method offers a comprehensive isolation method that can arbitrarily partition the data at any random direction and angle on subspaces of any size, effectively avoiding the algorithmic bias in the linear partition. Further, it requires only randomly initialised neural networks (i.e., no optimisation is required in our method) to ensure the freedom of the partition. In doing so, desired randomness and diversity in both random network-based representations and random partition-based isolation can be fully leveraged to significantly enhance the isolation ensemble-based anomaly detection. Also, our approach offers a data-type-agnostic anomaly detection solution. It is versatile to detect anomalies in different types of data by simply plugging in corresponding randomly initialised neural networks in the feature mapping. Extensive empirical results on a large collection of real-world datasets show that our model achieves substantial improvement over state-of-the-art isolation-based and non-isolation-based anomaly detection models.Comment: submission of KDD 2022, 12 pages, 7 figures; the source code is released at https://github.com/xuhongzuo/deep-ifores
    corecore