343 research outputs found

    PanCancer analysis of somatic mutations in repetitive regions reveals recurrent mutations in snRNA U2

    Full text link
    Current somatic mutation callers are biased against repetitive regions, preventing the identification of potential driver alterations in these loci. We developed a mutation caller for repetitive regions, and applied it to study repetitive non protein-coding genes in more than 2200 whole-genome cases. We identified a recurrent mutation at position c.28 in the gene encoding the snRNA U2. This mutation is present in B-cell derived tumors, as well as in prostate and pancreatic cancer, suggesting U2 c.28 constitutes a driver candidate associated with worse prognosis. We showed that the GRCh37 reference genome is incomplete, lacking the U2 cluster in chromosome 17, preventing the identification of mutations in this gene. Furthermore, the 5'-flanking region of WDR74, previously described as frequently mutated in cancer, constitutes a functional copy of U2. These data reinforce the relevance of non-coding mutations in cancer, and highlight current challenges of cancer genomic research in characterizing mutations affecting repetitive genes.© 2022. The Author(s)

    No Interaction of Barrier-to-Autointegration Factor (BAF) with HIV-1 MA, Cone-Rod Homeobox (Crx) or MAN1-C in Absence of DNA

    Get PDF
    Barrier-to-autointegration factor is a cellular protein that protects retroviral DNA from autointegration. Its cellular role is not well understood, but genetic studies show that it is essential and depletion or knockout results in lethal nuclear defects. In addition to binding DNA, BAF interacts with the LEM domain, a domain shared among a family of lamin-associated polypeptides. BAF has also been reported to interact with several other viral and cellular proteins suggesting that these interactions may be functionally relevant. We find that, contrary to previous reports, BAF does not interact with HIV-1 MA, cone-rod homeobox (Crx) or MAN1-C. The reported interactions can be explained by indirect association through DNA binding and are unlikely to be biologically relevant. A mutation that causes a premature aging syndrome lies on the previously reported MAN1-C binding surface of BAF. The absence of direct binding of BAF to MAN1-C eliminates disruption of this interaction as the cause of the premature aging phenotype

    Gene expression and splicing alterations analyzed by high throughput RNA sequencing of chronic lymphocytic leukemia specimens.

    Get PDF
    BackgroundTo determine differentially expressed and spliced RNA transcripts in chronic lymphocytic leukemia specimens a high throughput RNA-sequencing (HTS RNA-seq) analysis was performed.MethodsTen CLL specimens and five normal peripheral blood CD19+ B cells were analyzed by HTS RNA-seq. The library preparation was performed with Illumina TrueSeq RNA kit and analyzed by Illumina HiSeq 2000 sequencing system.ResultsAn average of 48.5 million reads for B cells, and 50.6 million reads for CLL specimens were obtained with 10396 and 10448 assembled transcripts for normal B cells and primary CLL specimens respectively. With the Cuffdiff analysis, 2091 differentially expressed genes (DEG) between B cells and CLL specimens based on FPKM (fragments per kilobase of transcript per million reads and false discovery rate, FDR q < 0.05, fold change >2) were identified. Expression of selected DEGs (n = 32) with up regulated and down regulated expression in CLL from RNA-seq data were also analyzed by qRT-PCR in a test cohort of CLL specimens. Even though there was a variation in fold expression of DEG genes between RNA-seq and qRT-PCR; more than 90 % of analyzed genes were validated by qRT-PCR analysis. Analysis of RNA-seq data for splicing alterations in CLL and B cells was performed by Multivariate Analysis of Transcript Splicing (MATS analysis). Skipped exon was the most frequent splicing alteration in CLL specimens with 128 significant events (P-value <0.05, minimum inclusion level difference >0.1).ConclusionThe RNA-seq analysis of CLL specimens identifies novel DEG and alternatively spliced genes that are potential prognostic markers and therapeutic targets. High level of validation by qRT-PCR for a number of DEG genes supports the accuracy of this analysis. Global comparison of transcriptomes of B cells, IGVH non-mutated CLL (U-CLL) and mutated CLL specimens (M-CLL) with multidimensional scaling analysis was able to segregate CLL and B cell transcriptomes but the M-CLL and U-CLL transcriptomes were indistinguishable. The analysis of HTS RNA-seq data to identify alternative splicing events and other genetic abnormalities specific to CLL is an added advantage of RNA-seq that is not feasible with other genome wide analysis

    Characterization of a caspase-3-substrate kinome using an N- and C-terminally tagged protein kinase library produced by a cell-free system

    Get PDF
    Caspase-3 (CASP3) cleaves many proteins including protein kinases (PKs). Understanding the relationship(s) between CASP3 and its PK substrates is necessary to delineate the apoptosis signaling cascades that are controlled by CASP3 activity. We report herein the characterization of a CASP3-substrate kinome using a simple cell-free system to synthesize a library that contained 304 PKs tagged at their N- and C-termini (NCtagged PKs) and a luminescence assay to report CASP3 cleavage events. Forty-three PKs, including 30 newly identified PKs, were found to be CASP3 substrates, and 28 cleavage sites in 23 PKs were determined. Interestingly, 16 out of the 23 PKs have cleavage sites within 60 residues of their N- or C-termini. Furthermore, 29 of the PKs were cleaved in apoptotic cells, including five that were cleaved near their termini in vitro. In total, approximately 14% of the PKs tested were CASP3 substrates, suggesting that CASP3 cleavage of PKs may be a signature event in apoptotic-signaling cascades. This proteolytic assay method would identify other protease substrates

    Functional evolution of ADAMTS genes: Evidence from analyses of phylogeny and gene organization

    Get PDF
    BACKGROUND: The ADAMTS (A Disintegrin-like and Metalloprotease with Thrombospondin motifs) proteins are a family of metalloproteases with sequence similarity to the ADAM proteases, that contain the thrombospondin type 1 sequence repeat motifs (TSRs) common to extracellular matrix proteins. ADAMTS proteins have recently gained attention with the discovery of their role in a variety of diseases, including tissue and blood disorders, cancer, osteoarthritis, Alzheimer's and the genetic syndromes Weill-Marchesani syndrome (ADAMTS10), thrombotic thrombocytopenic purpura (ADAMTS13), and Ehlers-Danlos syndrome type VIIC (ADAMTS2) in humans and belted white-spotting mutation in mice (ADAMTS20). RESULTS: Phylogenetic analysis and comparison of the exon/intron organization of vertebrate (Homo, Mus, Fugu), chordate (Ciona) and invertebrate (Drosophila and Caenorhabditis) ADAMTS homologs has elucidated the evolutionary relationships of this important gene family, which comprises 19 members in humans. CONCLUSIONS: The evolutionary history of ADAMTS genes in vertebrate genomes has been marked by rampant gene duplication, including a retrotransposition that gave rise to a distinct ADAMTS subfamily (ADAMTS1, -4, -5, -8, -15) that may have distinct aggrecanase and angiogenesis functions

    IgCaller for reconstructing immunoglobulin gene rearrangements and oncogenic translocations from whole-genome sequencing in lymphoid neoplasms

    Get PDF
    Immunoglobulin (Ig) gene rearrangements and oncogenic translocations are routinely assessed during the characterization of B cell neoplasms and stratification of patients with distinct clinical and biological features, with the assessment done using Sanger sequencing, targeted next-generation sequencing, or fluorescence in situ hybridization (FISH). Currently, a complete Ig characterization cannot be extracted from whole-genome sequencing (WGS) data due to the inherent complexity of the Ig loci. Here, we introduce IgCaller, an algorithm designed to fully characterize Ig gene rearrangements and oncogenic translocations from short-read WGS data. Using a cohort of 404 patients comprising different subtypes of B cell neoplasms, we demonstrate that IgCaller identifies both heavy and light chain rearrangements to provide additional information on their functionality, somatic mutational status, class switch recombination, and oncogenic Ig translocations. Our data thus support IgCaller to be a reliable alternative to Sanger sequencing and FISH for studying the genetic properties of the Ig loci.We are indebted to the Genomics Core Facility of the Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) for the technical support, to R. Siebert and D. Huebschmann for sharing the CSR regions, and to K. Stamatopoulos, E. Vlachonikola and F. Psomopoulos for their helpful comments on the manuscript. We thank R. Eils, P. Lichter, C. von Kalle, S. Fröhling, H. Glimm, M. Zapatka, S. Wolf, K. Beck, and J. Kirchhof for infrastructure and pipeline development within DKFZ-HIPO and NCT POP. This study was supported by the Instituto de Salud Carlos III and the European Regional Development Fund “Una manera de hacer Europa” (PMP15/00007 to E.C.), the “la Caixa” Foundation (CLLEvolution-LCF/PR/HR17/52150017, Health Research 2017 Program HR17-00221 to E.C.), the National Institute of Health “Molecular Diagnosis, Prognosis, and Therapeutic Targets in Mantle Cell Lymphoma” (P01CA229100 to E.C.), and CERCA Programme/Generalitat de Catalunya. F.N. is supported by a pre-doctoral fellowship of the Ministerio de Economía y Competitividad (BES-2016-076372). F.M. is supported by the Memorial Sloan Kettering Cancer Center NCI Core Grant (P30 CA 008748). E.C. is an Academia Researcher of the “Institució Catalana de Recerca i Estudis Avançats” (ICREA) of the Generalitat de Catalunya. This work was partially developed at the Centre Esther Koplowitz (CEK, Barcelona, Spain).Peer ReviewedPostprint (published version

    Characterization of a caspase-3-substrate kinome using an N- and C-terminally tagged protein kinase library produced by a cell-free system

    Get PDF
    Caspase-3 (CASP3) cleaves many proteins including protein kinases (PKs). Understanding the relationship(s) between CASP3 and its PK substrates is necessary to delineate the apoptosis signaling cascades that are controlled by CASP3 activity. We report herein the characterization of a CASP3-substrate kinome using a simple cell-free system to synthesize a library that contained 304 PKs tagged at their N- and C-termini (NCtagged PKs) and a luminescence assay to report CASP3 cleavage events. Forty-three PKs, including 30 newly identified PKs, were found to be CASP3 substrates, and 28 cleavage sites in 23 PKs were determined. Interestingly, 16 out of the 23 PKs have cleavage sites within 60 residues of their N- or C-termini. Furthermore, 29 of the PKs were cleaved in apoptotic cells, including five that were cleaved near their termini in vitro. In total, approximately 14% of the PKs tested were CASP3 substrates, suggesting that CASP3 cleavage of PKs may be a signature event in apoptotic-signaling cascades. This proteolytic assay method would identify other protease substrates

    wKinMut: An integrated tool for the analysis and interpretation of mutations in human protein kinases

    Get PDF
    BACKGROUND: Protein kinases are involved in relevant physiological functions and a broad number of mutations in this superfamily have been reported in the literature to affect protein function and stability. Unfortunately, the exploration of the consequences on the phenotypes of each individual mutation remains a considerable challenge. RESULTS: The wKinMut web-server offers direct prediction of the potential pathogenicity of the mutations from a number of methods, including our recently developed prediction method based on the combination of information from a range of diverse sources, including physicochemical properties and functional annotations from FireDB and Swissprot and kinase-specific characteristics such as the membership to specific kinase groups, the annotation with disease-associated GO terms or the occurrence of the mutation in PFAM domains, and the relevance of the residues in determining kinase subfamily specificity from S3Det. This predictor yields interesting results that compare favourably with other methods in the field when applied to protein kinases. Together with the predictions, wKinMut offers a number of integrated services for the analysis of mutations. These include: the classification of the kinase, information about associations of the kinase with other proteins extracted from iHop, the mapping of the mutations onto PDB structures, pathogenicity records from a number of databases and the classification of mutations in large-scale cancer studies. Importantly, wKinMut is connected with the SNP2L system that extracts mentions of mutations directly from the literature, and therefore increases the possibilities of finding interesting functional information associated to the studied mutations. CONCLUSIONS: wKinMut facilitates the exploration of the information available about individual mutations by integrating prediction approaches with the automatic extraction of information from the literature (text mining) and several state-of-the-art databases. wKinMut has been used during the last year for the analysis of the consequences of mutations in the context of a number of cancer genome projects, including the recent analysis of Chronic Lymphocytic Leukemia cases and is publicly available at http://wkinmut.bioinfo.cnio.es
    • …
    corecore