1,722 research outputs found

    Activated Carbon from the Chinese Herbal Medicine Waste by H 3

    Get PDF

    Induced Ferromagnetism at BiFeO3/YBa2Cu3O7 Interfaces

    Full text link
    Transition metal oxides (TMOs) exhibit many emergent phenomena ranging from high-temperature superconductivity and giant magnetoresistance to magnetism and ferroelectricity. In addition, when TMOs are interfaced with each other, new functionalities can arise, which are absent in individual components. Here, we report results from first-principles calculations on the magnetism at the BiFeO3/YBa2Cu3O7 interfaces. By comparing the total energy for various magnetic spin configurations inside BiFeO3, we are able to show that a metallic ferromagnetism is induced near the interface. We further develop an interface exchange-coupling model and place the extracted exchange coupling interaction strengths, from the first-principles calculations, into a resultant generic phase diagram. Our conclusion of interfacial ferromagnetism is confirmed by the presence of a hysteresis loop in field-dependent magnetization data. The emergence of interfacial ferromagnetism should have implications to electronic and transport properties.Comment: 13 pages, 4 figure

    Object Detection in Foggy Scenes by Embedding Depth and Reconstruction into Domain Adaptation

    Full text link
    Most existing domain adaptation (DA) methods align the features based on the domain feature distributions and ignore aspects related to fog, background and target objects, rendering suboptimal performance. In our DA framework, we retain the depth and background information during the domain feature alignment. A consistency loss between the generated depth and fog transmission map is introduced to strengthen the retention of the depth information in the aligned features. To address false object features potentially generated during the DA process, we propose an encoder-decoder framework to reconstruct the fog-free background image. This reconstruction loss also reinforces the encoder, i.e., our DA backbone, to minimize false object features.Moreover, we involve our target data in training both our DA module and our detection module in a semi-supervised manner, so that our detection module is also exposed to the unlabeled target data, the type of data used in the testing stage. Using these ideas, our method significantly outperforms the state-of-the-art method (47.6 mAP against the 44.3 mAP on the Foggy Cityscapes dataset), and obtains the best performance on multiple real-image public datasets. Code is available at: https://github.com/VIML-CVDL/Object-Detection-in-Foggy-ScenesComment: Accepted by ACC

    Effect and Mechanism of 808 nm Light Pretreatment of Hypoxic Primary Neurons

    Get PDF
    This study investigated the effect of low intensity 808 nm light pretreatment of hypoxic primary neurons. Cobalt chloride (CoCl2) has been used to induce hypoxic injury in primary mouse cortical neurons. Low intensity 808 nm light was from light-emitting diode (LED). Cells were randomly divided into 4 groups: normal control group, CoCl2-induced group, CoCl2-induced group with 808 nm light irradiation pretreatment, and normal group with 808 nm light irradiation pretreatment. Effect of low intensity 808 nm light on neuronal morphology has been observed by microscope. MTT colorimetric assay has been used to detect the effect of low intensity 808 nm light on neuronal activity. Adenosine triphosphate (ATP) concentration and cytochrome C oxidase (COX) activity has been detected to study the effect of low intensity 808 nm light on neuronal mitochondria function. The results indicated that low intensity 808 nm light pretreatment alone did not affect cell viability, COX activity, and ATP content of neurons and low intensity 808 nm light pretreatment promoted the cell viability, COX activity, and ATP content of neurons with CoCl2 exposure; however, low intensity 808 nm light pretreatment did not completely recover COX activity and cellular ATP content of primary neurons with CoCl2 exposure to the level of the normal neurons
    • …
    corecore