25 research outputs found

    OPTIMISATION OF HULL FORM OF OCEAN-GOING TRAWLER

    Get PDF
    This paper proposes a method for optimising the hull form of ocean-going trawlers to decrease resistance and consequently reduce the energy consumption. The entire optimisation process was managed by the integration of computer-aided design and computational fluid dynamics (CFD) in the CAESES software. Resistance was simulated using the CFD solver and STAR-CCM+. The ocean-going trawler was investigated under two main navigation conditions: trawling and design. Under the trawling condition, the main hull of the trawler was modified using the Lackenby method and optimised by NSGA-II algorithm and Sobol + Tsearch algorithm. Under the design condition, the bulbous bow was changed using the free-form deformation method, and the trawler was optimised by NSGA-Ⅱ. The best hull form is obtained by comparing the ship resistance under various design schemes. Towing experiments were conducted to measure the navigation resistance of trawlers before and after optimisation, thus verifying the reliability of the optimisation results. The results show that the proposed optimisation method can effectively reduce the resistance of trawlers under the two navigation conditions

    Solar Ring Mission: Building a Panorama of the Sun and Inner-heliosphere

    Full text link
    Solar Ring (SOR) is a proposed space science mission to monitor and study the Sun and inner heliosphere from a full 360{\deg} perspective in the ecliptic plane. It will deploy three 120{\deg}-separated spacecraft on the 1-AU orbit. The first spacecraft, S1, locates 30{\deg} upstream of the Earth, the second, S2, 90{\deg} downstream, and the third, S3, completes the configuration. This design with necessary science instruments, e.g., the Doppler-velocity and vector magnetic field imager, wide-angle coronagraph, and in-situ instruments, will allow us to establish many unprecedented capabilities: (1) provide simultaneous Doppler-velocity observations of the whole solar surface to understand the deep interior, (2) provide vector magnetograms of the whole photosphere - the inner boundary of the solar atmosphere and heliosphere, (3) provide the information of the whole lifetime evolution of solar featured structures, and (4) provide the whole view of solar transients and space weather in the inner heliosphere. With these capabilities, Solar Ring mission aims to address outstanding questions about the origin of solar cycle, the origin of solar eruptions and the origin of extreme space weather events. The successful accomplishment of the mission will construct a panorama of the Sun and inner-heliosphere, and therefore advance our understanding of the star and the space environment that holds our life.Comment: 41 pages, 6 figures, 1 table, to be published in Advances in Space Researc

    Prediction of Translation Ability of Complex English Sentences Based on Artificial Neural Network

    No full text
    The current translation training programs at colleges and universities are not fully adequate for students majoring in English, and some students do not perform well in their execution of translation tasks. Translation ability is a frontier topic in the field of translation. A number of studies have provided some new ideas for research on the main goals of translation education and the evaluation of students’ translation abilities, but few has used artificial intelligence to predict students’ translation abilities. This paper analyzes the prediction of the translation ability with respect to complex English sentences. First, based on the principles of accuracy, operability and scientificity, an evaluation indicator system was built to fully reflect the basic characteristics of students’ ability to translate complex English sentences, which is in line with the training needs of translation talents at colleges and universities. Then, based on the characteristics of the logical structures of complex English sentences, a grey Bernoulli prediction model was constructed for the translation ability of complex English sentences. The particle swarm optimization algorithm was selected as the parameter optimization algorithm for the prediction model of translation ability with respect to complex English sentences, with the optimization targets being the Bernoulli parameters and the order of the fractional-order accumulation generation. The experimental results verified the effectiveness of the proposed model

    Simulation and Experimental Study of Hydraulic Cylinder in Oscillating Float-Type Wave Energy Converter

    No full text
    Hydraulic cylinders play a vital role in the energy output (PTO) system of an oscillating float-type wave energy converter, whose function is to convert the mechanical energy captured by the float from the waves into hydraulic energy. The performance of the hydraulic cylinder determines the conversion efficiency of mechanical energy to hydraulic energy in the system; therefore, it is necessary to study the working mechanism of the hydraulic cylinder. This paper takes a self-developed oscillating float-type wave energy converter as the research object, and studies the working mechanism of its hydraulic cylinder, and uses the linear analysis method to derive the critical self-excited vibration curve of the hydraulic cylinder. In addition, the effects of the external load, hydraulic cylinder load mass, stroke length, spring stiffness and piston area on the performance of the hydraulic cylinder were studied by AMESim simulation software. According to the simulation results, a physical model of the hydraulic cylinder is established. Finally, the physical model is tested in a hydrodynamic pool. The test results show that the hydraulic cylinder can stably and efficiently convert mechanical energy into hydraulic energy even under small waves, thus verifying the rationality of the hydraulic cylinder design

    Simulation and experimental study of hydraulic cylinder in oscillating float-type wave energy converter

    No full text
    Hydraulic cylinders play a vital role in the energy output (PTO) system of an oscillating float-type wave Energy converter, whose function is to convert the mechanical energy captured by the float from the waves into hydraulic energy. The performance of the hydraulic cylinder determines the conversion efficiency of mechanical energy to hydraulic energy in the system; therefore, it is necessary to study the working mechanism of the hydraulic cylinder. This paper takes a self-developed oscillating float-type wave energy converter as the research object, and studies the working mechanism of its hydraulic cylinder, and uses the linear analysis method to derive the critical self-excited vibration curve of the hydraulic cylinder. In addition, the effects of the external load, hydraulic cylinder load mass, stroke length, spring stiffness and piston area on the performance of the hydraulic cylinder were studied by AMESim simulation software. According to the simulation results, a physical model of the hydraulic cylinder is established. Finally, the physical model is tested in a hydrodynamic pool. The test results show that the hydraulic cylinder can stably and efficiently convert mechanical energy into hydraulic energy even under small waves, thus verifying the rationality of the hydraulic cylinder design

    Numerical study on the optimization of hydrodynamic performance of oscillating buoy wave energy converter

    No full text
    The oscillating buoy wave energy converter (OBWEC) captures wave energy through the undulating movement of the buoy in the waves. In the process of capturing wave energy, the hydrodynamic performance of the buoy plays an important role. This paper designed the “Haida No. 1” OBWEC, in which the buoy adopts a form of swinging motion. In order to further improve the hydrodynamic performance of the buoy, a 2D numerical wave tank (NWT) model is established using ADINA software based on the working principle of the device. According to the motion equation of the buoy in the waves, the influence of the buoy shape, arm length, tilt angle, buoy draft, buoy width, wave height and Power Take-off (PTO) damping on the hydrodynamic performance of the buoy is studied. Finally, a series of physical experiments are performed on the device in a laboratory pool. The experimental results verify the consistency of the numerical results. The research results indicate that the energy conversion efficiency of the device can be improved by optimizing the hydrodynamic performance of the buoy. However, the absorption efficiency of a single buoy for wave energy is limited, so it is very difficult to achieve full absorption of wave energy

    Analysis of the dynamic response of offshore floating wind power platforms in waves

    No full text
    Floating wind power platforms are in constant motion due to waves when deployed at sea. This motion directly affects the stability and safety of the platform. Therefore, it is very important to study the laws governing the platform’s dynamic response. In this paper, the dynamic characteristics of an offshore floating wind power platform were analysed under nine different sets of operating conditions using a numerical calculation method. Following this, a scaled 1:50 platform model was tested in a tank. Model tests were carried out with different wave conditions, and dynamic response data for the platform were measured and analysed. The hydrodynamic variation rules of floating wind power generation platform in waves were obtained. Some effective measures for maintain the stability and safety of wind power platforms are put forward that can provide a reference for dynamic stability research and the design of floating wind power platforms in the future

    Investigation into fatigue performance of river-sea ships subjected to the combined effect of wave loads

    No full text
    [Objectives] Fatigue damage is considered to be common in marine engineering. River-sea ship is subjected to complex wave loads,which consist of river and sea. Its structural requirements lower than the sea, higher than the river boat. Fatigue strength of this type's structure needs further investigation. [Methods] A container ship is taken as the research object in this paper. The fatigue strength of river-sea ship is based on spectral analysis, combined with the China's coastal long-term wave loads data. And the fatigue damage rules of different checking points under different conditions were obtained and the differences of fatigue damage on the distribution of short-term sea conditions were studied. [Results] Analysis of the results shows that the fatigue damage in the sea area is mainly caused by the wave contribution of 2.5-5 m of significant wave height and 6-8 s of zero-crossing period. [Conclusions] Considering the combined effect of the river-sea wave loads, the fatigue life of the structure of the target ship is significantly increased. So only consider the sea wave environment is too conservative. The results provide the basis for the structural fatigue design of river-sea ship in the future
    corecore