12,827 research outputs found

    Ground-state phase diagram of the square lattice Hubbard model from density matrix embedding theory

    Get PDF
    We compute the ground-state phase diagram of the Hubbard and frustrated Hubbard models on the square lattice with density matrix embedding theory using clusters of up to 16 sites. We provide an error model to estimate the reliability of the computations and complexity of the physics at different points in the diagram. We find superconductivity in the ground-state as well as competition between inhomogeneous charge, spin, and pairing states at low doping. The estimated errors in the study are below Tc_c in the cuprates and on the scale of contributions in real materials that are neglected in the Hubbard model

    Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems

    Full text link
    Surface impedance is an important concept in classical wave systems such as photonic crystals (PCs). For example, the condition of an interface state formation in the interfacial region of two different one-dimensional PCs is simply Z_SL +Z_SR=0, where Z_SL (Z_SR)is the surface impedance of the semi-infinite PC on the left- (right-) hand side of the interface. Here, we also show a rigorous relation between the surface impedance of a one-dimensional PC and its bulk properties through the geometrical (Zak) phases of the bulk bands, which can be used to determine the existence or non-existence of interface states at the interface of the two PCs in a particular band gap. Our results hold for any PCs with inversion symmetry, independent of the frequency of the gap and the symmetry point where the gap lies in the Brillouin Zone. Our results provide new insights on the relationship between surface scattering properties, the bulk band properties and the formation of interface states, which in turn can enable the design of systems with interface states in a rational manner

    Coexistence of Localized and Extended States in Disordered Systems

    Full text link
    It is commonly believed that Anderson localized states and extended states do not coexist at the same energy. Here we propose a simple mechanism to achieve the coexistence of localized and extended states in a band in a class of disordered quasi-1D and quasi-2D systems. The systems are partially disordered in a way that a band of extended states always exists, not affected by the randomness, whereas the states in all other bands become localized. The extended states can overlap with the localized states both in energy and in space, achieving the aforementioned coexistence. We demonstrate such coexistence in disordered multi-chain and multi-layer systems.Comment: 5 pages, 3 figure

    Optical interface states protected by synthetic Weyl points

    Full text link
    Weyl fermions have not been found in nature as elementary particles, but they emerge as nodal points in the band structure of electronic and classical wave crystals. Novel phenomena such as Fermi arcs and chiral anomaly have fueled the interest in these topological points which are frequently perceived as monopoles in momentum space. Here we report the experimental observation of generalized optical Weyl points inside the parameter space of a photonic crystal with a specially designed four-layer unit cell. The reflection at the surface of a truncated photonic crystal exhibits phase vortexes due to the synthetic Weyl points, which in turn guarantees the existence of interface states between photonic crystals and any reflecting substrates. The reflection phase vortexes have been confirmed for the first time in our experiments which serve as an experimental signature of the generalized Weyl points. The existence of these interface states is protected by the topological properties of the Weyl points and the trajectories of these states in the parameter space resembles those of Weyl semimetal "Fermi arcs surface states" in momentum space. Tracing the origin of interface states to the topological character of the parameter space paves the way for a rational design of strongly localized states with enhanced local field.Comment: 36 pages, 9 figures. arXiv admin note: text overlap with arXiv:1610.0434
    • …
    corecore