5,726 research outputs found
Tunable entanglement distillation of spatially correlated down-converted photons
We report on a new technique for entanglement distillation of the bipartite
continuous variable state of spatially correlated photons generated in the
spontaneous parametric down-conversion process (SPDC), where tunable
non-Gaussian operations are implemented and the post-processed entanglement is
certified in real-time using a single-photon sensitive electron multiplying CCD
(EMCCD) camera. The local operations are performed using non-Gaussian filters
modulated into a programmable spatial light modulator and, by using the EMCCD
camera for actively recording the probability distributions of the
twin-photons, one has fine control of the Schmidt number of the distilled
state. We show that even simple non-Gaussian filters can be finely tuned to a
~67% net gain of the initial entanglement generated in the SPDC process.Comment: 12 pages, 6 figure
Lattice dynamics and structural stability of ordered Fe3Ni, Fe3Pd and Fe3Pt alloys
We investigate the binding surface along the Bain path and phonon dispersion
relations for the cubic phase of the ferromagnetic binary alloys Fe3X (X = Ni,
Pd, Pt) for L12 and DO22 ordered phases from first principles by means of
density functional theory. The phonon dispersion relations exhibit a softening
of the transverse acoustic mode at the M-point in the L12-phase in accordance
with experiments for ordered Fe3Pt. This instability can be associated with a
rotational movement of the Fe-atoms around the Ni-group element in the
neighboring layers and is accompanied by an extensive reconstruction of the
Fermi surface. In addition, we find an incomplete softening in [111] direction
which is strongest for Fe3 Ni. We conclude that besides the valence electron
density also the specific Fe-content and the masses of the alloying partners
should be considered as parameters for the design of Fe-based functional
magnetic materials.Comment: Revised version, accepted for publication in Physical Review
High-dimensional decoy-state quantum key distribution over 0.3 km of multicore telecommunication optical fibers
Multiplexing is a strategy to augment the transmission capacity of a
communication system. It consists of combining multiple signals over the same
data channel and it has been very successful in classical communications.
However, the use of enhanced channels has only reached limited practicality in
quantum communications (QC) as it requires the complex manipulation of quantum
systems of higher dimensions. Considerable effort is being made towards QC
using high-dimensional quantum systems encoded into the transverse momentum of
single photons but, so far, no approach has been proven to be fully compatible
with the existing telecommunication infrastructure. Here, we overcome such a
technological challenge and demonstrate a stable and secure high-dimensional
decoy-state quantum key distribution session over a 0.3 km long multicore
optical fiber. The high-dimensional quantum states are defined in terms of the
multiple core modes available for the photon transmission over the fiber, and
the decoy-state analysis demonstrates that our technique enables a positive
secret key generation rate up to 25 km of fiber propagation. Finally, we show
how our results build up towards a high-dimensional quantum network composed of
free-space and fiber based linksComment: Please see the complementary work arXiv:1610.01812 (2016
Características agronômicas de cultivares de banana influenciadas por diferentes lâminas de irrigação, no Recôncavo baiano.
O Brasil em 2012 produziu aproximadamente 6,9 milhões de toneladas de bananas, sendo o quinto maior produtor mundial, após Índia, Filipinas, China e Equador (FAO, 2012). Segundo o IBGE (2012), a região Nordeste é a principal produtora, responsável por 37,9% da produção, e o estado da Bahia o segundo maior produtor
Computing the vertices of tropical polyhedra using directed hypergraphs
We establish a characterization of the vertices of a tropical polyhedron
defined as the intersection of finitely many half-spaces. We show that a point
is a vertex if, and only if, a directed hypergraph, constructed from the
subdifferentials of the active constraints at this point, admits a unique
strongly connected component that is maximal with respect to the reachability
relation (all the other strongly connected components have access to it). This
property can be checked in almost linear-time. This allows us to develop a
tropical analogue of the classical double description method, which computes a
minimal internal representation (in terms of vertices) of a polyhedron defined
externally (by half-spaces or hyperplanes). We provide theoretical worst case
complexity bounds and report extensive experimental tests performed using the
library TPLib, showing that this method outperforms the other existing
approaches.Comment: 29 pages (A4), 10 figures, 1 table; v2: Improved algorithm in section
5 (using directed hypergraphs), detailed appendix; v3: major revision of the
article (adding tropical hyperplanes, alternative method by arrangements,
etc); v4: minor revisio
Localized thinning for strain concentration in suspended germanium membranes and optical method for precise thickness measurement
We deposited Ge layers on (001) Si substrates by molecular beam epitaxy and used them to fabricate suspended membranes with high uniaxial tensile strain. We demonstrate a CMOS-compatible fabrication strategy to increase strain concentration and to eliminate the Ge buffer layer near the Ge/Si hetero-interface deposited at low temperature. This is achieved by a two-steps patterning and selective etching process. First, a bridge and neck shape is patterned in the Ge membrane, then the neck is thinned from both top and bottom sides. Uniaxial tensile strain values higher than 3% were measured by Raman scattering in a Ge membrane of 76 nm thickness. For the challenging thickness measurement on micrometer-size membranes suspended far away from the substrate a characterization method based on pump-and-probe reflectivity measurements was applied, using an asynchronous optical sampling technique.EC/FP7/628197/EU/Heat Propagation and Thermal Conductivity in Nanomaterials for Nanoscale Energy Management/HEATPRONAN
Neural Modeling and Control of Diesel Engine with Pollution Constraints
The paper describes a neural approach for modelling and control of a
turbocharged Diesel engine. A neural model, whose structure is mainly based on
some physical equations describing the engine behaviour, is built for the
rotation speed and the exhaust gas opacity. The model is composed of three
interconnected neural submodels, each of them constituting a nonlinear
multi-input single-output error model. The structural identification and the
parameter estimation from data gathered on a real engine are described. The
neural direct model is then used to determine a neural controller of the
engine, in a specialized training scheme minimising a multivariable criterion.
Simulations show the effect of the pollution constraint weighting on a
trajectory tracking of the engine speed. Neural networks, which are flexible
and parsimonious nonlinear black-box models, with universal approximation
capabilities, can accurately describe or control complex nonlinear systems,
with little a priori theoretical knowledge. The presented work extends optimal
neuro-control to the multivariable case and shows the flexibility of neural
optimisers. Considering the preliminary results, it appears that neural
networks can be used as embedded models for engine control, to satisfy the more
and more restricting pollutant emission legislation. Particularly, they are
able to model nonlinear dynamics and outperform during transients the control
schemes based on static mappings.Comment: 15 page
- …