704 research outputs found
Characterizations of Nonemptiness and Compactness of the Set of Weakly Efficient Solutions for Convex Vector Optimization and Applications
AbstractIn this paper, we give characterizations for the nonemptiness and compactness of the set of weakly efficient solutions of an unconstrained/constrained convex vector optimization problem with extended vector-valued functions in terms of the 0-coercivity of some scalar functions. Finally, we apply these results to discuss solution characterizations of a constrained convex vector optimization problem in terms of solutions of a sequence of unconstrained vector optimization problems which are constructed with a general nonlinear Lagrangian
Recommended from our members
In situ investigation of working battery electrodes using synchrotron x-ray diffraction
The results of an in situ investigation of the structural changes that occur during the operation of working battery electrodes using synchrotron radiation are presented. Two types of electrodes were investigated: an AB{sub 2}-type Laves phase alloy anode with the composition Zr{sub x}Ti{sub 1-x}M{sub 2} and a proprietary cell based on a Li{sub x}Mn{sub 2}O{sub 4} spinel compound cathode made by Gould electronics. For the Laves phase alloy compositions with x=0.25 and 0.5 and M=V{sub 0.5}N{sub 1.1}Mn{sub 0.2}Fe{sub 0.2} were examined. Cells made from two different batches of Li{sub x}Mn{sub 2}O{sub 4} material were investigated. The relationships between battery performance and structural changes will be discussed. In the later case, we also discuss the role of over-discharging on the Li{sub x}Mn{sub 2}O{sub 4} structure and on battery operation
A remark on a standard and linear vector network equilibrium problem with capacity constraints
2007-2008 > Academic research: refereed > Publication in refereed journa
Local disorder and optical properties in V-shaped quantum wires : towards one-dimensional exciton systems
The exciton localization is studied in GaAs/GaAlAs V-shaped quantum wires
(QWRs) by high spatial resolution spectroscopy. Scanning optical imaging of
different generations of samples shows that the localization length has been
enhanced as the growth techniques were improved. In the best samples, excitons
are delocalized in islands of length of the order of 1 micron, and form a
continuum of 1D states in each of them, as evidenced by the sqrt(T) dependence
of the radiative lifetime. On the opposite, in the previous generation of QWRs,
the localization length is typically 50 nm and the QWR behaves as a collection
of quantum boxes. These localization properties are compared to structural
properties and related to the progresses of the growth techniques. The presence
of residual disorder is evidenced in the best samples and explained by the
separation of electrons and holes due to the large in-built piezo-electric
field present in the structure.Comment: 8 figure
Charmless Decays Based on the six-quark Effective Hamiltonian with Strong Phase Effects II
We provide a systematic study of charmless decays (
and denote pseudoscalar and vector mesons, respectively) based on an
approximate six-quark operator effective Hamiltonian from QCD. The calculation
of the relevant hard-scattering kernels is carried out, the resulting
transition form factors are consistent with the results of QCD sum rule
calculations. By taking into account important classes of power corrections
involving "chirally-enhanced" terms and the vertex corrections as well as weak
annihilation contributions with non-trivial strong phase, we present
predictions for the branching ratios and CP asymmetries of decays into
PP, PV and VV final states, and also for the corresponding polarization
observables in VV final states. It is found that the weak annihilation
contributions with non-trivial strong phase have remarkable effects on the
observables in the color-suppressed and penguin-dominated decay modes. In
addition, we discuss the SU(3) flavor symmetry and show that the symmetry
relations are generally respected
A sequential quadratic penalty method for nonlinear semidefinite programming
2003-2004 > Academic research: refereed > Publication in refereed journa
Guiding and confining fast electrons by transient electric and magnetic fields with a plasma inverse cone
Copyright 2009 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Plasmas, 16(2), 020702, 2009 and may be found at http://dx.doi.org/10.1063/1.307592
Optical properties and radiative forcing of urban aerosols in Nanjing, China
AbstractContinuous measurements of atmospheric aerosols were made in Nanjing, a megacity in China, from 18 January to 18 April, 2011 (Phase 1) and from 22 April 2011 to 21 April 2012 (Phase 2). Aerosol characteristics, optical properties, and direct radiative forcing (DRF) were studied through interpretations of these measurements. We found that during Phase 1, mean PM2.5, black carbon (BC), and aerosol scattering coefficient (Bsp) in Nanjing were 76.1 ± 59.3 μg m−3, 4.1 ± 2.2 μg m−3, and 170.9 ± 105.8 M m−1, respectively. High pollution episodes occurred during Spring and Lantern Festivals when hourly PM2.5 concentrations reached 440 μg m−3, possibly due to significant discharge of fireworks. Temporal variations of PM2.5, BC, and Bsp were similar to each other. It is estimated that inorganic scattering aerosols account for about 49 ± 8.6% of total aerosols while BC only accounted for 6.6 ± 2.9%, and nitrate was larger than sulfate. In Phase 2, optical properties of aerosols show great seasonality. High relative humidity (RH) in summer (June, July, August) likely attributed to large optical depth (AOD) and small Angstrom exponent (AE) of aerosols. Due to dust storms, AE of total aerosols was the smallest in spring (March, April, May). Annual mean 550-nm AOD and 675/440-nm AE were 0.6 ± 0.3 and 1.25 ± 0.29 for total aerosols, 0.04 ± 0.02 and 1.44 ± 0.50 for absorbing aerosols, 0.48 ± 0.29 and 1.64 ± 0.29 for fine aerosols, respectively. Annual single scattering albedo of aerosols ranged from 0.90 to 0.92. Real time wavelength-dependent surface albedo from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to assess aerosol DRFs. Both total and absorbing aerosol DRFs had significant seasonal variations in Nanjing and they were the strongest in summer. Annual mean clear sky TOA DRF (including daytime and nighttime) of total and absorbing aerosols was about −6.9 and +4.5 W m−2, respectively. Aerosol DRFs were found to be sensitive to surface albedo. Over brighter surfaces, solar radiation was more absorbed by absorbing aerosols and less scattered by scattering aerosols
Possible Dibaryons with Strangeness s=-5
In the framework of , the binding energy of the six quark system with
strangeness s=-5 is systematically investigated under the SU(3) chiral
constituent quark model. The single channel calculation with
spins S=0 and 3 and the coupled and channel
calculation with spins S=1 and 2 are considered, respectively. The results show
following observations: In the spin=0 case, is a bound dibaryon
with the binding energy being . In the S=1 case,
is also a bound dibaryon. Its binding energy is ranged from to . In the S=2 and S=3 cases, no evidence of bound dibaryons
are found. The phase shifts and scattering lengths in the S=0 and S=1 cases are
also given.Comment: 10 pages, late
- …