292 research outputs found
Cosmological Constraints on the Sign-Changeable Interactions
Recently, Cai and Su [Phys. Rev. D {\bf 81}, 103514 (2010)] found that the
sign of interaction in the dark sector changed in the approximate redshift
range of 0.45\,\lsim\, z\,\lsim\, 0.9, by using a model-independent method to
deal with the observational data. In fact, this result raises a remarkable
problem, since most of the familiar interactions cannot change their signs in
the whole cosmic history. Motivated by the work of Cai and Su, we have proposed
a new type of interaction in a previous work [H. Wei, Nucl. Phys. B {\bf 845},
381 (2011)]. The key ingredient is the deceleration parameter in the
interaction , and hence the interaction can change its sign when our
universe changes from deceleration () to acceleration (). In the
present work, we consider the cosmological constraints on this new type of
sign-changeable interactions, by using the latest observational data. We find
that the cosmological constraints on the model parameters are fairly tight. In
particular, the key parameter can be constrained to a narrow range.Comment: 15 pages, 1 table, 8 figures, revtex4; v2: published versio
Horava-Lifshitz Dark Energy
We formulate Horava-Lifshitz cosmology with an additional scalar field that
leads to an effective dark energy sector. We find that, due to the inherited
features from the gravitational background, Horava-Lifshitz dark energy
naturally presents very interesting behaviors, possessing a varying
equation-of-state parameter, exhibiting phantom behavior and allowing for a
realization of the phantom divide crossing. In addition, Horava-Lifshitz dark
energy guarantees for a bounce at small scale factors and it may trigger the
turnaround at large scale factors, leading naturally to cyclic cosmology.Comment: 17 pages, no figures, version published at EJP
Running coupling: Does the coupling between dark energy and dark matter change sign during the cosmological evolution?
In this paper we put forward a running coupling scenario for describing the
interaction between dark energy and dark matter. The dark sector interaction in
our scenario is free of the assumption that the interaction term is
proportional to the Hubble expansion rate and the energy densities of dark
sectors. We only use a time-variable coupling (with the scale factor
of the universe) to characterize the interaction . We propose a
parametrization form for the running coupling in which the
early-time coupling is given by a constant , while today the coupling is
given by another constant, . For investigating the feature of the running
coupling, we employ three dark energy models, namely, the cosmological constant
model (), the constant model (), and the time-dependent
model (). We constrain the models with the current
observational data, including the type Ia supernova, the baryon acoustic
oscillation, the cosmic microwave background, the Hubble expansion rate, and
the X-ray gas mass fraction data. The fitting results indicate that a
time-varying vacuum scenario is favored, in which the coupling crosses
the noninteracting line () during the cosmological evolution and the sign
changes from negative to positive. The crossing of the noninteracting line
happens at around , and the crossing behavior is favored at about
1 confidence level. Our work implies that we should pay more attention
to the time-varying vacuum model and seriously consider the phenomenological
construction of a sign-changeable or oscillatory interaction between dark
sectors.Comment: 8 pages, 5 figures; refs added; to appear in EPJ
Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-
We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi -->
D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7
J/Psi events collected with the BESII detector at the BEPC. No excess of signal
above background is observed, and 90% confidence level upper limits on the
branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi
--> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure
Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar
The branching ratios and Angular distributions for J/psi decays to Lambda
Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure
Direct Measurements of the Branching Fractions for and and Determinations of the Form Factors and
The absolute branching fractions for the decays and
are determined using singly
tagged sample from the data collected around 3.773 GeV with the
BES-II detector at the BEPC. In the system recoiling against the singly tagged
meson, events for and events for decays are observed. Those yield
the absolute branching fractions to be and . The
vector form factors are determined to be
and . The ratio of the two form
factors is measured to be .Comment: 6 pages, 5 figure
Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta
Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector,
the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are
measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and
(7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure
BESII Detector Simulation
A Monte Carlo program based on Geant3 has been developed for BESII detector
simulation. The organization of the program is outlined, and the digitization
procedure for simulating the response of various sub-detectors is described.
Comparisons with data show that the performance of the program is generally
satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM
- …