240 research outputs found
Distribution of spectral weight in a system with disordered stripes
The ``band-structure'' of a disordered stripe array is computed and compared,
at a qualitative level, to angle resolved photoemission experiments on the
cuprate high temperature superconductors. The low-energy states are found to be
strongly localized transverse to the stripe direction, so the electron dynamics
is strictly one-dimensional (along the stripe). Despite this, aspects of the
two dimensional band-structure Fermi surface are still vividly apparent.Comment: 10 pages, 11 figure
Systematic Cu-63 NQR studies of the stripe phase in La(1.6-x)Nd(0.4)Sr(x)CuO(4) for 0.07 <= x <= 0.25
We demonstrate that the integrated intensity of Cu-63 nuclear quadrupole
resonance (NQR) in La(1.6-x)Nd(0.4)Sr(x)CuO(4) decreases dramatically below the
charge-stripe ordering temperature T(charge). Comparison with neutron and X-ray
scattering indicates that the wipeout fraction F(T) (i.e. the missing fraction
of the integrated intensity of the NQR signal) represents the charge-stripe
order parameter. The systematic study reveals bulk charge-stripe order
throughout the superconducting region 0.07 <= x <= 0.25. As a function of the
reduced temperature t = T/T(charge), the temperature dependence of F(t) is
sharpest for the hole concentration x=1/8, indicating that x=1/8 is the optimum
concentration for stripe formation.Comment: 10 pages of text and captions, 11 figures in postscript. Final
version, with new data in Fig.
Lepton Flavor Violation in the SUSY-GUT Models with Lopsided Mass Matrix
The tiny neutrino masses measured in the neutrino oscillation experiments can
be naturally explained by the supersymmetric see-saw mechanism. If the
supersymmetry breaking is mediated by gravity, the see-saw models may predict
observable lepton flavor violating effects. In this work, we investigate the
lepton flavor violating process in the kind of neutrino mass
models based on the idea of the ``lopsided'' form of the charged lepton mass
matrix. The constraints set by the muon anomalous magnetic moment are taken
into account. We find the present models generally predict a much larger
branching ratio of than the experimental limit. Conversely,
this process may give strong constraint on the lepton flavor structure.
Following this constraint we then find a new kind of the charged lepton mass
matrix. The feature of the structure is that both the elements between the 2-3
and 1-3 generations are ``lopsided''. This structure produces a very small 1-3
mixing and a large 1-2 mixing in the charged lepton sector, which naturally
leads to small and the LMA solution for the solar neutrino
problem.Comment: 24 pages, 8 figure
Modelling of strain effects in manganite films
Thickness dependence and strain effects in films of
perovskites are analyzed in the colossal magnetoresistance regime. The
calculations are based on a generalization of a variational approach previously
proposed for the study of manganite bulk. It is found that a reduction in the
thickness of the film causes a decrease of critical temperature and
magnetization, and an increase of resistivity at low temperatures. The strain
is introduced through the modifications of in-plane and out-of-plane electron
hopping amplitudes due to substrate-induced distortions of the film unit cell.
The strain effects on the transition temperature and transport properties are
in good agreement with experimental data only if the dependence of the hopping
matrix elements on the bond angle is properly taken into account.
Finally variations of the electron-phonon coupling linked to the presence of
strain turn out important in influencing the balance of coexisting phases in
the filmComment: 7 figures. To be published on Physical Review
Stability of metallic stripes in the extended one-band Hubbard model
Based on an unrestricted Gutzwiller approximation (GA) we investigate the
stripe orientation and periodicity in an extended one-band Hubbard model. A
negative ratio between next-nearest and nearest neighbor hopping t'/t, as
appropriate for cuprates, favors partially filled (metallic) stripes for both
vertical and diagonal configurations. At around optimal doping diagonal
stripes, site centered (SC) and bond centered (BC) vertical stripes become
degenerate suggesting strong lateral and orientational fluctuations. We find
that within the GA the resulting phase diagram is in agreement with experiment
whereas it is not in the Hartree-Fock approximation due to a strong
overestimation of the stripe filling. Results are in agreement with previous
calculations within the three-band Hubbard model but with the role of SC and BC
stripes interchanged.Comment: 10 pages, 8 figure
On the precipitation hardening of selective laser melted AlSi10Mg
Precipitation hardening of selective laser melted AlSi10Mg was investigated in terms of solution heat treatment and aging duration. The influence on the microstructure and hardness was established, as was the effect on the size and density of Si particles. Although the hardness changes according to the treatment duration, the maximum hardening effect falls short of the hardness of the as-built parts with their characteristic fine microstructure. This is due to the difference in strengthening mechanisms
The ARGO-YBJ Experiment Progresses and Future Extension
Gamma ray source detection above 30TeV is an encouraging approach for finding
galactic cosmic ray origins. All sky survey for gamma ray sources using wide
field of view detector is essential for population accumulation for various
types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has
been established. Significant progresses have been made in the experiment. A
large air shower detector array in an area of 1km2 is proposed to boost the
sensitivity. Hybrid detection with multi-techniques will allow a good
discrimination between different types of primary particles, including photons
and protons, thus enable an energy spectrum measurement for individual specie.
Fluorescence light detector array will extend the spectrum measurement above
100PeV where the second knee is located. An energy scale determined by balloon
experiments at 10TeV will be propagated to ultra high energy cosmic ray
experiments
Dispersion of Ordered Stripe Phases in the Cuprates
A phase separation model is presented for the stripe phase of the cuprates,
which allows the doping dependence of the photoemission spectra to be
calculated. The idealized limit of a well-ordered array of magnetic and charged
stripes is analyzed, including effects of long-range Coulomb repulsion.
Remarkably, down to the limit of two-cell wide stripes, the dispersion can be
interpreted as essentially a superposition of the two end-phase dispersions,
with superposed minigaps associated with the lattice periodicity. The largest
minigap falls near the Fermi level; it can be enhanced by proximity to a (bulk)
Van Hove singularity. The calculated spectra are dominated by two features --
this charge stripe minigap plus the magnetic stripe Hubbard gap. There is a
strong correlation between these two features and the experimental
photoemission results of a two-peak dispersion in LaSrCuO, and
the peak-dip-hump spectra in BiSrCaCuO. The
differences are suggestive of the role of increasing stripe fluctuations. The
1/8 anomaly is associated with a quantum critical point, here expressed as a
percolation-like crossover. A model is proposed for the limiting minority
magnetic phase as an isolated two-leg ladder.Comment: 24 pages, 26 PS figure
High Altitude test of RPCs for the ARGO-YBJ experiment
A 50 m**2 RPC carpet was operated at the YangBaJing Cosmic Ray Laboratory
(Tibet) located 4300 m a.s.l. The performance of RPCs in detecting Extensive
Air Showers was studied. Efficiency and time resolution measurements at the
pressure and temperature conditions typical of high mountain laboratories, are
reported.Comment: 16 pages, 10 figures, submitted to Nucl. Instr. Met
Direct Measurements of the Branching Fractions for and and Determinations of the Form Factors and
The absolute branching fractions for the decays and
are determined using singly
tagged sample from the data collected around 3.773 GeV with the
BES-II detector at the BEPC. In the system recoiling against the singly tagged
meson, events for and events for decays are observed. Those yield
the absolute branching fractions to be and . The
vector form factors are determined to be
and . The ratio of the two form
factors is measured to be .Comment: 6 pages, 5 figure
- …