40,012 research outputs found
Dynamics of ultra-intense circularly polarized solitons under inhomogeneous plasmas
The dynamics of the ultra-intense circularly polarized solitons under
inhomogeneous plasmas are examined. The interaction is modeled by the Maxwell
and relativistic hydrodynamic equations and is solved with fully implicit
energy-conserving numerical scheme. It is shown that a propagating weak soliton
can be decreased and reflected by increasing plasma background, which is
consistent with the existing studies based on hypothesis of weak density
response. However it is found that ultra-intense soliton is well trapped and
kept still when encountering increasing background. Probably, this founding can
be applied for trapping and amplifying high-intensity laser-fields.Comment: 4 pages, 3 figures, submitted to Phys. Plasma
Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime
It is shown that well collimated mono-energetic ion beams with a large
particle number can be generated in the hole-boring radiation pressure
acceleration regime by using an elliptically polarized laser pulse with
appropriate theoretically determined laser polarization ratio. Due to the
effect, the double-layer charge separation region is
imbued with hot electrons that prevent ion pileup, thus suppressing the
double-layer oscillations. The proposed mechanism is well confirmed by
Particle-in-Cell simulations, and after suppressing the longitudinal
double-layer oscillations, the ion beams driven by the elliptically polarized
lasers own much better energy spectrum than those by circularly polarized
lasers.Comment: 6 pages, 5 figures, Phys. Plasmas (2013) accepte
Sub-TeV proton beam generation by ultra-intense laser irradiation of foil-and-gas target
A two-phase proton acceleration scheme using an ultra-intense laser pulse irradiating a proton foil with a tenuous heavier-ion plasma behind it is presented. The foil electrons are compressed and pushed out as a thin dense layer by the radiation pressure and propagate in the plasma behind at near the light speed. The protons are in turn accelerated by the resulting space-charge field and also enter the backside plasma, but without the formation of a quasistationary double layer. The electron layer is rapidly weakened by the space-charge field. However, the laser pulse originally behind it now snowplows the backside-plasma electrons and creates an intense electrostatic wakefield. The latter can stably trap and accelerate the pre-accelerated proton layer there for a very long distance and thus to very high energies. The two-phase scheme is verified by particle-in-cell simulations and analytical modeling, which also suggests that a 0.54 TeV proton beam can be obtained with a 10(23) W/cm(2) laser pulse. (C) 2012 American Institute of Physics. [doi:10.1063/1.3684658]Physics, Fluids & PlasmasSCI(E)EI0ARTICLE2null1
Recommended from our members
Coil combination using linear deconvolution in k-space for phase imaging
Background: The combination of multi-channel data is a critical step for the imaging of phase and susceptibility contrast in magnetic resonance imaging (MRI). Magnitude-weighted phase combination methods often produce noise and aliasing artifacts in the magnitude images at accelerated imaging sceneries. To address this issue, an optimal coil combination method through deconvolution in k-space is proposed in this paper.
Methods: The proposed method firstly employs the sum-of-squares and phase aligning method to yield a complex reference coil image which is then used to calculate the coil sensitivity and its Fourier transform. Then, the coil k-space combining weights is computed, taking into account the truncated frequency data of coil sensitivity and the acquired k-space data. Finally, combining the coil k-space data with the acquired weights generates the k-space data of proton distribution, with which both phase and magnitude information can be obtained straightforwardly. Both phantom and in vivo imaging experiments were conducted to evaluate the performance of the proposed method.
Results: Compared with magnitude-weighted method and MCPC-C, the proposed method can alleviate the phase cancellation in coil combination, resulting in a less wrapped phase.
Conclusions: The proposed method provides an effective and efficient approach to combine multiple coil image in parallel MRI reconstruction, and has potential to benefit routine clinical practice in the future
Berry phase in a composite system
The Berry phase in a composite system with only one subsystem being driven
has been studied in this Letter. We choose two spin- systems with
spin-spin couplings as the composite system, one of the subsystems is driven by
a time-dependent magnetic field. We show how the Berry phases depend on the
coupling between the two subsystems, and what is the relation between these
Berry phases of the whole system and those of the subsystems.Comment: 4 pages, 6 figure
- …