11,351 research outputs found

    Dipolar effect in coherent spin mixing of two atoms in a single optical lattice site

    Full text link
    We show that atomic dipolar effects are detectable in the system that recently demonstrated two-atom coherent spin dynamics within individual lattice sites of a Mott state. Based on a two-state approximation for the two-atom internal states and relying on a variational approach, we have estimated the spin dipolar effect. Despite the absolute weakness of the dipole-dipole interaction, it is shown that it leads to experimentally observable effects in the spin mixing dynamics.Comment: 4 pages, 3 color eps figures, to appear in Phys. Rev. Let

    A single intrinsic Josephson junction with double-sided fabrication technique

    Full text link
    We make stacks of intrinsic Josephson junctions (IJJs) imbedded in the bulk of very thin (d≤100d\leq 100~nm) Bi2Sr2CaCu2O8+x\mathrm{Bi_2Sr_2CaCu_2O_{8+x}} single crystals. By precisely controlling the etching depth during the double-sided fabrication process, the stacks can be reproducibly tailor-made to be of any microscopic height (0−9nm<d0-9 \mathrm{nm} <d), i.e. enclosing a specified number of IJJ (0-6), including the important case of a single junction. We discuss reproducible gap-like features in the current-voltage characteristics of the samples at high bias.Comment: 3 pages, 4 figures, to be published in APL May. 2

    Superconducting properties of ultrathin Bi2Sr2CaCu2O8+x single crystals

    Full text link
    We use Ar-ion milling to thin Bi2212 single crystals down to a few nanometers or one-to-two (CuO2)2 layers. With decreasing the thickness, superconducting transition temperature gradually decreases to zero and the in-plane resistivity increases to large values indicating the existence of a superconductor-insulator transition in ultrathin Bi2212 single crystals.Comment: 17 pages, 6 figures, to appear in J. Appl. Phys. 98(3) 200

    Coherent population trapping in a dressed two-level atom via a bichromatic field

    Full text link
    We show theoretically that by applying a bichromatic electromagnetic field, the dressed states of a monochromatically driven two-level atom can be pumped into a coherent superposition termed as dressed-state coherent population trapping. Such effect can be viewed as a new doorknob to manipulate a two-level system via its control over dressed-state populations. Application of this effect in the precision measurement of Rabi frequency, the unexpected population inversion and lasing without inversion are discussed to demonstrate such controllability.Comment: 14 pages, 6 figure

    A qubit strongly-coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation

    Full text link
    We investigate the spontaneous emission spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. The qubit-cavity coupling strength is varied from weak, to strong, even to lower bound of the ultra-strong. For the weak-coupling case, the spontaneous emission spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Increasing the qubit-cavity coupling increases the asymmetry (the positions about the qubit energy spacing and heights of the two peaks) of the two spontaneous emission peaks (which are related to the vacuum Rabi splitting) more. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks becomes larger, when the qubit-cavity coupling strength is increased. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted from the same case of the low-frequency bath, when the qubit is strongly coupled to the cavity. Increasing the qubit-cavity coupling to the lower bound of the ultra-strong regime, the height asymmetry of the left and right peak heights are inverted, which is consistent with the same case of low-frequency bath, only relatively weak. Therefore, our results explicitly show how the height asymmetry in the spontaneous emission spectrum peaks depends not only on the qubit-cavity coupling, but also on the type of intrinsic noise experienced by the qubit.Comment: 10pages, 5 figure

    Effects of critical temperature inhomogeneities on the voltage-current characteristics of a planar superconductor near the Berezinskii-Kosterlitz-Thouless transition

    Full text link
    We analyze numerically how the voltage-current (V-I) characteristics near the so-called Berezinskii-Kosterlitz-Thouless (BKT) transition of 2D superconductors are affected by a random spatial Gaussian distribution of critical temperature inhomogeneities with long characteristic lengths (much larger than the in-plane superconducting coherence length amplitude). Our simulations allow to quantify the broadening around the average BKT transition temperature of both the exponent alpha in V I^alpha and of the resistance V/I. These calculations reveal that strong spatial redistributions of the local current will occur around the transition as either I or the temperature T are varied. Our results also support that the condition alpha=3 provides a good estimate for the location of the average BKT transition temperature, and that extrapolating to alpha->1 the alpha(T) behaviour well below the transition provides a good estimate for the average mean-field critical temperature.Comment: 18 pages; pdfLaTeX; 1 TeX file + 8 PDF files for figures (figs.1,2,3a,3b,4,5a,5b,6

    Topological quantum phase transition in an extended Kitaev spin model

    Full text link
    We study the quantum phase transition between Abelian and non-Abelian phases in an extended Kitaev spin model on the honeycomb lattice, where the periodic boundary condition is applied by placing the lattice on a torus. Our analytical results show that this spin model exhibits a continuous quantum phase transition. Also, we reveal the relationship between bipartite entanglement and the ground-state energy. Our approach directly shows that both the entanglement and the ground-state energy can be used to characterize the topological quantum phase transition in the extended Kitaev spin model.Comment: 9 Pages, 4 figure

    Implementing topological quantum manipulation with superconducting circuits

    Full text link
    A two-component fermion model with conventional two-body interactions was recently shown to have anyonic excitations. We here propose a scheme to physically implement this model by transforming each chain of two two-component fermions to the two capacitively coupled chains of superconducting devices. In particular, we elaborate how to achieve the wanted operations to create and manipulate the topological quantum states, providing an experimentally feasible scenario to access the topological memory and to build the anyonic interferometry.Comment: 4 pages with 3 figures; V2: published version with minor updation
    • …
    corecore