13,217 research outputs found
Critical behaviours of contact near phase transitions
A central quantity of importance for ultracold atoms is contact, which
measures two-body correlations at short distances in dilute systems. It appears
in universal relations among thermodynamic quantities, such as large momentum
tails, energy, and dynamic structure factors, through the renowned Tan
relations. However, a conceptual question remains open as to whether or not
contact can signify phase transitions that are insensitive to short-range
physics. Here we show that, near a continuous classical or quantum phase
transition, contact exhibits a variety of critical behaviors, including scaling
laws and critical exponents that are uniquely determined by the universality
class of the phase transition and a constant contact per particle. We also use
a prototypical exactly solvable model to demonstrate these critical behaviors
in one-dimensional strongly interacting fermions. Our work establishes an
intrinsic connection between the universality of dilute many-body systems and
universal critical phenomena near a phase transition.Comment: Final version published in Nat. Commun. 5:5140 doi:
10.1038/ncomms6140 (2014
A Three-Pole Substrate Integrated Waveguide Bandpass Filter Using New Coupling Scheme
A novel three-pole substrate integrated waveguide (SIW) bandpass filter (BPF) using new coupling scheme is proposed in this paper. Two high order degenerate modes (TE102 and TE201) of a square SIW cavity and a dominant mode (TE101) of a rectangular SIW cavity are coupled to form a three-pole SIW BPF. The coupling scheme of the structure is given and analyzed. Due to the coupling between two cavities, as well as the coupling between source and load, three transmission zeros are created in the stopband of the filter. The proposed three-pole SIW BPF is designed and fabricated. Good agreement between simulated and measured results verifies the validity of the design methodology well
Specific heat and thermal conductivity of ferromagnetic magnons in Yttrium Iron Garnet
The specific heat and thermal conductivity of the insulating ferrimagnet
YFeO (Yttrium Iron Garnet, YIG) single crystal were measured
down to 50 mK. The ferromagnetic magnon specific heat shows a
characteristic dependence down to 0.77 K. Below 0.77 K, a downward
deviation is observed, which is attributed to the magnetic dipole-dipole
interaction with typical magnitude of 10 eV. The ferromagnetic magnon
thermal conductivity does not show the characteristic
dependence below 0.8 K. To fit the data, both magnetic defect
scattering effect and dipole-dipole interaction are taken into account. These
results complete our understanding of the thermodynamic and thermal transport
properties of the low-lying ferromagnetic magnons.Comment: 5 pages, 5 figure
Yang-Yang method for the thermodynamics of one-dimensional multi-component interacting fermions
Using Yang and Yang's particle-hole description, we present a thorough
derivation of the thermodynamic Bethe ansatz equations for a general
fermionic system in one-dimension for both the repulsive and
attractive regimes under the presence of an external magnetic field. These
equations are derived from Sutherland's Bethe ansatz equations by using the
spin-string hypothesis. The Bethe ansatz root patterns for the attractive case
are discussed in detail. The relationship between the various phases of the
magnetic phase diagrams and the external magnetic fields is given for the
attractive case. We also give a quantitative description of the ground state
energies for both strongly repulsive and strongly attractive regimes.Comment: 22 pages, 2 figures, slight improvements, some extra reference
KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation.
KDM2B (also known as FBXL10) controls stem cell self-renewal, somatic cell reprogramming and senescence, and tumorigenesis. KDM2B contains multiple functional domains, including a JmjC domain that catalyzes H3K36 demethylation and a CxxC zinc-finger that recognizes CpG islands and recruits the polycomb repressive complex 1. Here, we report that KDM2B, via its F-box domain, functions as a subunit of the CUL1-RING ubiquitin ligase (CRL1/SCF(KDM2B)) complex. KDM2B targets c-Fos for polyubiquitylation and regulates c-Fos protein levels. Unlike the phosphorylation of other SCF (SKP1-CUL1-F-box)/CRL1 substrates that promotes substrates binding to F-box, epidermal growth factor (EGF)-induced c-Fos S374 phosphorylation dissociates c-Fos from KDM2B and stabilizes c-Fos protein. Non-phosphorylatable and phosphomimetic mutations at S374 result in c-Fos protein which cannot be induced by EGF or accumulates constitutively and lead to decreased or increased cell proliferation, respectively. Multiple tumor-derived KDM2B mutations impaired the function of KDM2B to target c-Fos degradation and to suppress cell proliferation. These results reveal a novel function of KDM2B in the negative regulation of cell proliferation by assembling an E3 ligase to targeting c-Fos protein degradation that is antagonized by mitogenic stimulations
Universal Tomonaga-Luttinger liquid phases in one-dimensional strongly attractive SU(N) fermionic cold atoms
A simple set of algebraic equations is derived for the exact low-temperature
thermodynamics of one-dimensional multi-component strongly attractive fermionic
atoms with enlarged SU(N) spin symmetry and Zeeman splitting. Universal
multi-component Tomonaga-Luttinger liquid (TLL) phases are thus determined. For
linear Zeeman splitting, the physics of the gapless phase at low temperatures
belongs to the universality class of a two-component asymmetric TLL
corresponding to spin-neutral N-atom composites and spin-(N-1)/2 single atoms.
The equation of states is also obtained to open up the study of multi-component
TLL phases in 1D systems of N-component Fermi gases with population imbalance.Comment: 12 pages, 3 figure
Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2
The in-plane resistivity and thermal conductivity of
FeAs-based superconductor KFeAs single crystal were measured down to 50
mK. We observe non-Fermi-liquid behavior at =
5 T, and the development of a Fermi liquid state with when
further increasing field. This suggests a field-induced quantum critical point,
occurring at the superconducting upper critical field . In zero field
there is a large residual linear term , and the field dependence of
mimics that in d-wave cuprate superconductors. This indicates that
the superconducting gaps in KFeAs have nodes, likely d-wave symmetry.
Such a nodal superconductivity is attributed to the antiferromagnetic spin
fluctuations near the quantum critical point.Comment: 4 pages, 4 figures - replaces arXiv:0909.485
- …