65,035 research outputs found

    CARS spectroscopy of the (v=0→1v=0\to1) band in T2\rm{T_2}

    Full text link
    Molecular hydrogen is a benchmark system for bound state quantum calculation and tests of quantum electrodynamical effects. While spectroscopic measurements on the stable species have progressively improved over the years, high resolution studies on the radioactive isotopologues T2\rm{T_2}, HT\rm{HT} and DT\rm{DT} have been limited. Here we present an accurate determination of T2\rm{T_2} Q(J=0−5)Q(J = 0 - 5) transition energies in the fundamental vibrational band of the ground electronic state, by means of high resolution Coherent Anti-Stokes Raman Spectroscopy. With the present experimental uncertainty of 0.02 cm−10.02\,\rm{cm^{-1}}, which is a fivefold improvement over previous measurements, agreement with the latest theoretical calculations is demonstrated.Comment: 9 pages, 3 figure

    Longitudinal Schottky spectra of a bunched Ne10+ ion beam at the CSRe

    Full text link
    The longitudinal Schottky spectra of a radio-frequency (RF) bunched and electron cooled 22Ne10+ ion beam at 70 MeV/u have been studied by a newly installed resonant Schottky pick-up at the experimental cooler storage ring (CSRe), at IMP. For an RF-bunched ion beam, a longitudinal momentum spread of has been reached with less than 107 stored ions. The reduction of momentum spread compared with coasting ion beam was observed from Schottky noise signal of the bunched ion beam. In order to prepare the future laser cooling experiment at the CSRe, the RF-bunching power was modulated at 25th, 50th and 75th harmonic of the revolution frequency, effective bunching amplitudes were extracted from the Schottky spectrum analysis. Applications of Schottky noise for measuring beam lifetime with ultra-low intensity of ion beams are presented, and it is relevant to upcoming experiments on laser cooling of relativistic heavy ion beams and nuclear physics at the CSRe.Comment: to be published in Chinese Physics
    • …
    corecore