39,281 research outputs found

    Origin of Mass. Mass and Mass-Energy Equation from Classical-Mechanics Solution

    Full text link
    We establish the classical wave equation for a particle formed of a massless oscillatory elementary charge generally also traveling, and the resulting electromagnetic waves, of a generally Doppler-effected angular frequency \w, in the vacuum in three dimensions. We obtain from the solutions the total energy of the particle wave to be \eng=\hbarc\w, 2\pi \hbarc being a function expressed in wave-medium parameters and identifiable as the Planck constant. In respect to the train of the waves as a whole traveling at the finite velocity of light cc, \eng=mc^2 represents thereby the translational kinetic energy of the wavetrain, m=\hbarc\w/c^2 being its inertial mass and thereby the inertial mass of the particle. Based on the solutions we also write down a set of semi-empirical equations for the particle's de Broglie wave parameters. From the standpoint of overall modern experimental indications we comment on the origin of mass implied by the solution.Comment: 13 pages, no figure. Augmented introductio

    Force and Mass Dynamics in Non-Newtonian Suspensions

    Full text link
    Above a certain solid fraction, dense granular suspensions in water exhibit non-Newtonian behavior, including impact-activated solidification. Although it has been suggested that solidification depends on boundary interactions, quantitative experiments on the boundary forces have not been reported. Using high-speed video, tracer particles, and photoelastic boundaries, we determine the impactor kinematics and the magnitude and timings of impactor-driven events in the body and at the boundaries of cornstarch suspensions. We observe mass shocks in the suspension during impact. The shockfront dynamics are strongly correlated to those of the intruder. However, the total momentum associated with this shock never approaches the initial impactor momentum. We also observe a faster second front, associated with the propagation of pressure to the boundaries of the suspension. The two fronts depend differently on the initial impactor speed, v0v_0, and the suspension packing fraction. The speed of the pressure wave is at least an order of magnitude smaller than (linear) ultrasound speeds obtained for much higher frequencies, pointing to complex amplitude and frequency response of cornstarch suspensions to compressive strains

    Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions

    Full text link
    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts, a) electric charges present with all material particles, b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation and c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass, Einstein mass-energy relation, Newton's law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A specific solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200
    • …
    corecore