3,189 research outputs found

    Search for axion-like particles using a variable baseline photon regeneration technique

    Full text link
    We report the first results of the GammeV experiment, a search for milli-eV mass particles with axion-like couplings to two photons. The search is performed using a "light shining through a wall" technique where incident photons oscillate into new weakly interacting particles that are able to pass through the wall and subsequently regenerate back into detectable photons. The oscillation baseline of the apparatus is variable, thus allowing probes of different values of particle mass. We find no excess of events above background and are able to constrain the two-photon couplings of possible new scalar (pseudoscalar) particles to be less than 3.1x10^{-7} GeV^{-1} (3.5x10^{-7} GeV^{-1}) in the limit of massless particles.Comment: 5 pages, 4 figures. This is the version accepted by PRL and includes updated limit

    Numerical investigation of azimuthal thermoacoustic instability in a gas turbine model combustor

    Full text link
    Self-excited spinning mode azimuthal instability in an annular combustor with non-swirling flow is investigated using large eddy simulation (LES). Compressible Navier-Stoke equations are solved with a flamelet combustion model to describe the subgrid chemistry−-turbulence interactions. Two flamelet models, with and without heat loss effects, are compared to elucidate the non-adiabatic wall effects on the thermoacoustic instability. The azimuthal modes are captured well by both models with only marginal differences in the computed frequencies and amplitudes. By comparing with the experimental measurements, the frequencies given by the LES are approximately 10\% higher and the amplitudes are well predicted. Further analysis of the experimental and LES data shows a similar dominant anti-clockwise spinning mode, under which a good agreement is observed for the phase-averaged heat release rate fluctuations. Dynamic mode decomposition (DMD) is applied to shed more light on this spinning mode. The LES and experimental DMD modes reconstructed for their azimuthal mode frequencies agree very well for the heat release fluctuations. The DMD mode structure for the acoustic pressure from the LES shows a considerable non-zero profile at the combustor outlet, which could be essential for azimuthal modes to establish in this annular combustor. Finally, a low-order modelling study was conducted using an acoustic network combined with the flame transfer function extracted from LES. The results show that the dominant mode is associated with the plenum showing a first longitudinal and azimuthal mixed mode structure. By tuning the plenum length to match the effective volume, the predicted frequency becomes very close to the measured value

    Transport Properties of a Chain of Anharmonic Oscillators with random flip of velocities

    Get PDF
    We consider the stationary states of a chain of nn anharmonic coupled oscillators, whose deterministic hamiltonian dynamics is perturbed by random independent sign change of the velocities (a random mechanism that conserve energy). The extremities are coupled to thermostats at different temperature TℓT_\ell and TrT_r and subject to constant forces τℓ\tau_\ell and τr\tau_r. If the forces differ τℓ≠τr\tau_\ell \neq \tau_r the center of mass of the system will move of a speed VsV_s inducing a tension gradient inside the system. Our aim is to see the influence of the tension gradient on the thermal conductivity. We investigate the entropy production properties of the stationary states, and we prove the existence of the Onsager matrix defined by Green-kubo formulas (linear response). We also prove some explicit bounds on the thermal conductivity, depending on the temperature.Comment: Published version: J Stat Phys (2011) 145:1224-1255 DOI 10.1007/s10955-011-0385-

    Transport and conservation laws

    Full text link
    We study the lowest order conservation laws in one-dimensional (1D) integrable quantum many-body models (IQM) as the Heisenberg spin 1/2 chain, the Hubbard and t-J model. We show that the energy current is closely related to the first conservation law in these models and therefore the thermal transport coefficients are anomalous. Using an inequality on the time decay of current correlations we show how the existence of conserved quantities implies a finite charge stiffness (weight of the zero frequency component of the conductivity) and so ideal conductivity at finite temperatures.Comment: 6 pages, Late

    On higher congruences between cusp forms and Eisenstein series

    Full text link
    In this paper we present several finite families of congruences between cusp forms and Eisenstein series of higher weights at powers of prime ideals. We formulate a conjecture which describes properties of the prime ideals and their relation to the weights. We check the validity of the conjecture on several numerical examples.Comment: 20 page

    Thermodyamic bounds on Drude weights in terms of almost-conserved quantities

    Full text link
    We consider one-dimensional translationally invariant quantum spin (or fermionic) lattices and prove a Mazur-type inequality bounding the time-averaged thermodynamic limit of a finite-temperature expectation of a spatio-temporal autocorrelation function of a local observable in terms of quasi-local conservation laws with open boundary conditions. Namely, the commutator between the Hamiltonian and the conservation law of a finite chain may result in boundary terms only. No reference to techniques used in Suzuki's proof of Mazur bound is made (which strictly applies only to finite-size systems with exact conservation laws), but Lieb-Robinson bounds and exponential clustering theorems of quasi-local C^* quantum spin algebras are invoked instead. Our result has an important application in the transport theory of quantum spin chains, in particular it provides rigorous non-trivial examples of positive finite-temperature spin Drude weight in the anisotropic Heisenberg XXZ spin 1/2 chain [Phys. Rev. Lett. 106, 217206 (2011)].Comment: version as accepted by Communications in Mathematical Physics (22 pages with 2 pdf-figures

    Rectification of the Water Permeability in COS-7 Cells at 22, 10 and 0°C

    Get PDF
    The osmotic and permeability parameters of a cell membrane are essential physico-chemical properties of a cell and particularly important with respect to cell volume changes and the regulation thereof. Here, we report the hydraulic conductivity, Lp, the non-osmotic volume, Vb, and the Arrhenius activation energy, Ea, of mammalian COS-7 cells. The ratio of Vb to the isotonic cell volume, Vc iso, was 0.29. Ea, the activation energy required for the permeation of water through the cell membrane, was 10,700, and 12,000 cal/mol under hyper- and hypotonic conditions, respectively. Average values for Lp were calculated from swell/shrink curves by using an integrated equation for Lp. The curves represented the volume changes of 358 individually measured cells, placed into solutions of nonpermeating solutes of 157 or 602 mOsm/kg (at 0, 10 or 22°C) and imaged over time. Lp estimates for all six combinations of osmolality and temperature were calculated, resulting in values of 0.11, 0.21, and 0.10 µm/min/atm for exosmotic flow and 0.79, 1.73 and 1.87 µm/min/atm for endosmotic flow (at 0, 10 and 22°C, respectively). The unexpected finding of several fold higher Lp values for endosmotic flow indicates highly asymmetric membrane permeability for water in COS-7. This phenomenon is known as rectification and has mainly been reported for plant cell, but only rarely for animal cells. Although the mechanism underlying the strong rectification found in COS-7 cells is yet unknown, it is a phenomenon of biological interest and has important practical consequences, for instance, in the development of optimal cryopreservation

    Cooperative Effects in the Photoluminescence of (In,Ga)As/GaAs Quantum Dot Chain Structures

    Get PDF
    Multilayer In0.4Ga0.6As/GaAs quantum dot (QD) chain samples are investigated by means of cw and time-resolved photoluminescence (PL) spectroscopy in order to study the peculiarities of interdot coupling in such nanostructures. The temperature dependence of the PL has revealed details of the confinement. Non-thermal carrier distribution through in-chain, interdot wave function coupling is found. The peculiar dependences of the PL decay time on the excitation and detection energies are ascribed to the electronic interdot coupling and the long-range coupling through the radiation field. It is shown that the dependence of the PL decay time on the excitation wavelength is a result of the superradiance effect

    Fabrication of ultralow-density quantum dots by droplet etching epitaxy

    Get PDF
    Isolated single quantum dots (QDs) enable the investigation of quantum-optics phenomena for the application of quantum information technologies. In this work, ultralow-density InAs QDs are grown by combining droplet etching epitaxy and the conventional epitaxy growth mode. An extreme low density of QDs (∼106 cm−2) is realized by creating low-density self-assembled nanoholes with the high temperature droplet etching epitaxy technique and then nanohole-filling. The preferred nucleation of QDs in nanoholes has been explained by a theoretical model. Atomic force microscopy and the photoluminescence technique are used to investigate the morphological and optical properties of the QD samples. By varying In coverages, the size of InAs QDs can be controlled. Moreover, with a thin GaAs cap layer, the position of QDs remains visible on the sample surface. Such a low density and surface signature of QDs make this growth method promising for single QD investigation and single dot device fabrication

    Ab initio study of the volume dependence of dynamical and thermodynamical properties of silicon

    Full text link
    Motivated by the negative thermal expansion observed for silicon between 20 K and 120 K, we present first an ab initio study of the volume dependence of interatomic force constants, phonon frequencies of TA(X) and TA(L) modes, and of the associated mode Gruneisen parameters. The influence of successive nearest neighbors shells is analysed. Analytical formulas, taking into account interactions up to second nearest neighbors, are developped for phonon frequencies of TA(X) and TA(L) modes and the corresponding mode Gruneisen parameters. We also analyze the volume and pressure dependence of various thermodynamic properties (specific heat, bulk modulus, thermal expansion), and point out the effect of the negative mode Gruneisen parameters of the acoustic branches on these properties. Finally, we present the evolution of the mean square atomic displacement and of the atomic temperature factor with the temperature for different volumes, for which the anomalous effects are even greater.Comment: 24 pages, Revtex 3.0, 11 figures, accepted for publication in Phys. Rev.
    • …
    corecore