40,401 research outputs found
Adder Based Residue to Binary Number Converters for (2n - 1; 2n; 2n + 1)
Copyright © 2002 IEEEBased on an algorithm derived from the new Chinese remainder theorem I, we present three new residue-to-binary converters for the residue number system (2n-1, 2n, 2n+1) designed using 2n-bit or n-bit adders with improvements on speed, area, or dynamic range compared with various previous converters. The 2n-bit adder based converter is faster and requires about half the hardware required by previous methods. For n-bit adder-based implementations, one new converter is twice as fast as the previous method using a similar amount of hardware, whereas another new converter achieves improvement in either speed, area, or dynamic range compared with previous convertersYuke Wang, Xiaoyu Song, Mostapha Aboulhamid and Hong She
Calibration of shielded microwave probes using bulk dielectrics
A stripline-type near-field microwave probe is microfabricated for microwave
impedance microscopy. Unlike the poorly shielded coplanar probe that senses the
sample tens of microns away, the stripline structure removes the stray fields
from the cantilever body and localizes the interaction only around the
focused-ion beam deposited Pt tip. The approaching curve of an oscillating tip
toward bulk dielectrics can be quantitatively simulated and fitted to the
finite-element analysis result. The peak signal of the approaching curve is a
measure of the sample dielectric constant and can be used to study unknown bulk
materials.Comment: 10 pages, 3 figure
Symmetry of the Gap in Bi2212 from Photoemission Spectroscopy
In a recent Letter, Shen et al have detected a large anisotropy of the
superconducting gap in Bi2212, consistent with d-wave symmetry, from
photoemission spectroscopy. Moreover, they claim that the change in their
spectra as a function of aging is also consistent with such an intrepretation.
In this Comment, I show that the latter statement is not entirely correct, in
that the data as a function of aging are inconsistent with a d-wave gap but are
consistent with an anisotropic s-wave gap.Comment: 3 pages (Plain TeX with macros), plus 1 postscript figur
Modeling of a Cantilever-Based Near-Field Scanning Microwave Microscope
We present a detailed modeling and characterization of our scalable microwave
nanoprobe, which is a micro-fabricated cantilever-based scanning microwave
probe with separated excitation and sensing electrodes. Using finite-element
analysis, the tip-sample interaction is modeled as small impedance changes
between the tip electrode and the ground at our working frequencies near 1GHz.
The equivalent lumped elements of the cantilever can be determined by
transmission line simulation of the matching network, which routes the
cantilever signals to 50 Ohm feed lines. In the microwave electronics, the
background common-mode signal is cancelled before the amplifier stage so that
high sensitivity (below 1 atto-Farad capacitance changes) is obtained.
Experimental characterization of the microwave probes was performed on
ion-implanted Si wafers and patterned semiconductor samples. Pure electrical or
topographical signals can be realized using different reflection modes of the
probe.Comment: 7 figure
- …