509 research outputs found

    Experimentally obtaining the Likeness of Two Unknown Quantum States on an NMR Quantum Information Processor

    Full text link
    Recently quantum states discrimination has been frequently studied. In this paper we study them from the other way round, the likeness of two quantum states. The fidelity is used to describe the likeness of two quantum states. Then we presented a scheme to obtain the fidelity of two unknown qubits directly from the integral area of the spectra of the assistant qubit(spin) on an NMR Quantum Information Processor. Finally we demonstrated the scheme on a three-qubit quantum information processor. The experimental data are consistent with the theoretical expectation with an average error of 0.05, which confirms the scheme.Comment: 3 pages, 4 figure

    Constitutional Flavonoids Derived from Epimedium Dose-Dependently Reduce Incidence of Steroid-Associated Osteonecrosis Not via Direct Action by Themselves on Potential Cellular Targets

    Get PDF
    Intravascular-thrombosis and extravascular-lipid-deposit are the two key pathogenic events considered to interrupt intraosseous blood supply during development of steroid-associated osteonecrosis (ON). However, there are no clinically employed agents capable of simultaneously targeting these two key pathogenic events. The present experimental study demonstrated that constitutional flavonoid glycosides derived from herb Epimedium (EF, composed of seven flavonoid compounds with common stem nuclear) exerted dose-dependent effect on inhibition of both thrombosis and lipid-deposition and accordingly reducing incidence of steroid-associated ON in rabbits, which was not via direct action by themselves rather by their common metabolite on potential cellular targets involved in the two pathogenic pathways. The underlying mechanism could be explained by counteracting endothelium injury and excessive adipogenesis. These findings encourage designing clinical trials to investigate potential of EF in prevention of steroid-associated ON

    HBV-Related Hepatocellular Carcinoma Susceptibility Gene KIF1B Is Not Associated with Development of Chronic Hepatitis B

    Get PDF
    A recent genome-wide association study has identified a new susceptibility locus, kinesin family member 1B gene (KIF1B), strongly associated with progression from chronic hepatitis B (CHB) to hepatitis B virus-related hepatocellular carcinoma (HCC) in Chinese population, this study was carried out to explore the role of the genetic variants in KIF1B in the development of chronic hepatitis B.Three KIF1B polymorphisms (rs8019, rs17401924, and rs17401966) were selected and genotyped in 473 CHB patients and 580 controls with no history of CHB. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression model. None of these three SNPs showed association with CHBs after adjusting for age and gender. Equivalence-based method analysis confirmed the absence of association. In the further haplotype analysis, three common haplotypes were observed in this study population, but no significant effect was also found for haplotypes in the progression to CHB.This study showed the new locus identified for HCC, KIF1B, was not associated with progression to CHB, implying distinct genetic susceptibility factor contributes to the progression from hepatitis B virus infection to HCC. Nevertheless, further comprehensive analyses are warranted to dissect the mechanism

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM

    Col V siRNA Engineered Tenocytes for Tendon Tissue Engineering

    Get PDF
    The presence of uniformly small collagen fibrils in tendon repair is believed to play a major role in suboptimal tendon healing. Collagen V is significantly elevated in healing tendons and plays an important role in fibrillogenesis. The objective of this study was to investigate the effect of a particular chain of collagen V on the fibrillogenesis of Sprague-Dawley rat tenocytes, as well as the efficacy of Col V siRNA engineered tenocytes for tendon tissue engineering. RNA interference gene therapy and a scaffold free tissue engineered tendon model were employed. The results showed that scaffold free tissue engineered tendon had tissue-specific tendon structure. Down regulation of collagen V α1 or α2 chains by siRNAs (Col5α1 siRNA, Col5α2 siRNA) had different effects on collagen I and decorin gene expressions. Col5α1 siRNA treated tenocytes had smaller collagen fibrils with abnormal morphology; while those Col5α2 siRNA treated tenocytes had the same morphology as normal tenocytes. Furthermore, it was found that tendons formed by coculture of Col5α1 siRNA treated tenocytes with normal tenocytes at a proper ratio had larger collagen fibrils and relative normal contour. Conclusively, it was demonstrated that Col V siRNA engineered tenocytes improved tendon tissue regeneration. And an optimal level of collagen V is vital in regulating collagen fibrillogenesis. This may provide a basis for future development of novel cellular- and molecular biology-based therapeutics for tendon diseases

    Common Features in Electronic Structure of the Fe-Based Layered Superconductors from Photoemission Spectroscopy

    Full text link
    High resolution photoemission measurements have been carried out on non-superconducting LaOFeAs parent compound and various superconducting R(O1-xFx)FeAs (R=La, Ce and Pr) compounds. We found that the parent LaOFeAs compound shows a metallic character. Through extensive measurements, we have identified several common features in the electronic structure of these Fe-based compounds: (1). 0.2 eV feature in the valence band; (2). A universal 13~16 meV feature; (3). A clear Fermi cutoff showing zero leading-edge shift in the superconducting state;(4). Lack of superconducting coherence peak(s); (5). Near EF spectral weight suppression with decreasing temperature. These universal features can provide important information about band structure, superconducting gap and pseudogap in these Fe-based materials.Comment: 5 pages,4 figure

    Genome-Wide Association Study of Copy Number Variants Suggests LTBP1 and FGD4 Are Important for Alcohol Drinking

    Get PDF
    Alcohol dependence (AD) is a complex disorder characterized by psychiatric and physiological dependence on alcohol. AD is reflected by regular alcohol drinking, which is highly inheritable. In this study, to identify susceptibility genes associated with alcohol drinking, we performed a genome-wide association study of copy number variants (CNVs) in 2,286 Caucasian subjects with Affymetrix SNP6.0 genotyping array. We replicated our findings in 1,627 Chinese subjects with the same genotyping array. We identified two CNVs, CNV207 (combined p-value 1.91E-03) and CNV1836 (combined p-value 3.05E-03) that were associated with alcohol drinking. CNV207 and CNV1836 are located at the downstream of genes LTBP1 (870 kb) and FGD4 (400 kb), respectively. LTBP1, by interacting TGFB1, may down-regulate enzymes directly participating in alcohol metabolism. FGD4 plays a role in clustering and trafficking GABAA receptor and subsequently influence alcohol drinking through activating CDC42. Our results provide suggestive evidence that the newly identified CNV regions and relevant genes may contribute to the genetic mechanism of alcohol dependence
    corecore