54,870 research outputs found

    Spin Qubits in Multi-Electron Quantum Dots

    Full text link
    We study the effect of mesoscopic fluctuations on the magnitude of errors that can occur in exchange operations on quantum dot spin-qubits. Mid-size double quantum dots, with an odd number of electrons in the range of a few tens in each dot, are investigated through the constant interaction model using realistic parameters. It is found that the constraint of having short pulses and small errors implies keeping accurate control, at the few percent level, of several electrode voltages. In practice, the number of independent parameters per dot that one should tune depends on the configuration and ranges from one to four.Comment: RevTex, 6 pages, 5 figures. v3: two figures added, more details provided. Accepted for publication in PR

    Phonon Squeezed States Generated by Second Order Raman Scattering

    Full text link
    We study squeezed states of phonons, which allow a reduction in the quantum fluctuations of the atomic displacements to below the zero-point quantum noise level of coherent phonon states. We investigate the generation of squeezed phonon states using a second order Raman scattering process. We calculate the expectation values and fluctuations of both the atomic displacement and the lattice amplitude operators, as well as the effects of the phonon squeezed states on macroscopically measurable quantities, such as changes in the dielectric constant. These results are compared with recent experiments.Comment: 4 pages, REVTE

    Comment on "Single-mode excited entangled coherent states"

    Full text link
    In Xu and Kuang (\textit{J. Phys. A: Math. Gen.} 39 (2006) L191), the authors claim that, for single-mode excited entangled coherent states ∣Ψ±(α,m)>| \Psi_{\pm}(\alpha,m)>, \textquotedblleft the photon excitations lead to the decrease of the concurrence in the strong field regime of ∣α∣2| \alpha | ^{2} and the concurrence tends to zero when ∣α∣2→∞| \alpha | ^{2}\to \infty". This is wrong.Comment: 4 apges, 2 figures, submitted to JPA 15 April 200

    The Universal Edge Physics in Fractional Quantum Hall Liquids

    Full text link
    The chiral Luttinger liquid theory for fractional quantum Hall edge transport predicts universal power-law behavior in the current-voltage (II-VV) characteristics for electrons tunneling into the edge. However, it has not been unambiguously observed in experiments in two-dimensional electron gases based on GaAs/GaAlAs heterostructures or quantum wells. One plausible cause is the fractional quantum Hall edge reconstruction, which introduces non-chiral edge modes. The coupling between counterpropagating edge modes can modify the exponent of the II-VV characteristics. By comparing the ν=1/3\nu=1/3 fractional quantum Hall states in modulation-doped semiconductor devices and in graphene devices, we show that the graphene-based systems have an experimental accessible parameter region to avoid the edge reconstruction, which is suitable for the exploration of the universal edge tunneling exponent predicted by the chiral Luttinger liquid theory.Comment: 7 pages, 6 figure

    Analytical Solution of Electron Spin Decoherence Through Hyperfine Interaction in a Quantum Dot

    Full text link
    We analytically solve the {\it Non-Markovian} single electron spin dynamics due to hyperfine interaction with surrounding nuclei in a quantum dot. We use the equation-of-motion method assisted with a large field expansion, and find that virtual nuclear spin flip-flops mediated by the electron contribute significantly to a complete decoherence of transverse electron spin correlation function. Our results show that a 90% nuclear polarization can enhance the electron spin T2T_2 time by almost two orders of magnitude. In the long time limit, the electron spin correlation function has a non-exponential 1/t21/t^2 decay in the presence of both polarized and unpolarized nuclei.Comment: 4 pages, 3 figure
    • …
    corecore