41,727 research outputs found

    Evidence for a chemical-thermal structure at base of mantle from sharp lateral P-wave variations beneath Central America

    Get PDF
    Compressional waves that sample the lowermost mantle west of Central America show a rapid change in travel times of up to 4 s over a sampling distance of 300 km and a change in waveforms. The differential travel times of the PKP waves (which traverse Earth's core) correlate remarkably well with predictions for S-wave tomography. Our modeling suggests a sharp transition in the lowermost mantle from a broad slow region to a broad fast region with a narrow zone of slowest anomaly next to the boundary beneath the Cocos Plate and the Caribbean Plate. The structure may be the result of ponding of ancient subducted Farallon slabs situated near the edge of a thermal and chemical upwelling

    Intrinsic Charm Flavor and Helicity Content in the Proton

    Get PDF
    Contributions to the quark flavor and spin observables from the intrinsic charm in the proton are discussed in the SU(4) quark meson fluctuation model. Our results suggest that the probability of finding the intrinsic charm in the proton is less than 1%. The intrinsic charm helicity is small and negative, Δc≃−(0.003∌0.015)\Delta c \simeq -(0.003\sim 0.015). The fraction of the total quark helicity carried by the intrinsic charm is less than 2%, and c_\up/c_\dw=35/67.Comment: 4 pages, 2 tables (revised version

    Robust Preparation of GHZ and W States of Three Distant Atoms

    Full text link
    Schemes to generate Greenberger-Horne-Zeilinger(GHZ) and W states of three distant atoms are proposed in this paper. The schemes use the effects of quantum statistics of indistinguishable photons emitted by the atoms inside optical cavities. The advantages of the schemes are their robustness against detection inefficiency and asynchronous emission of the photons. Moreover, in Lamb-Dicke limit, the schemes do not require simultaneous click of the detectors, this makes the schemes more realizable in experiments.Comment: 5 pages, 1 fiure. Phys. Rev. A 75, 044301 (2007

    Quark Orbital Angular Momentum in the Baryon

    Full text link
    Analytical and numerical results, for the orbital and spin content carried by different quark flavors in the baryons, are given in the chiral quark model with symmetry breaking. The reduction of the quark spin, due to the spin dilution in the chiral splitting processes, is transferred into the orbital motion of quarks and antiquarks. The orbital angular momentum for each quark flavor in the proton as a function of the partition factor Îș\kappa and the chiral splitting probability aa is shown. The cancellation between the spin and orbital contributions in the spin sum rule and in the baryon magnetic moments is discussed.Comment: 26 pages, 3 figures, revised version with minor eq. no and ref. no. corrections. Discussion on the Λ\Lambda spin and a new ref. are adde

    On the predominant mechanisms active during the high power diode laser modification of the wettability characteristics of an SiO2/Al2O3-based ceramic material

    Get PDF
    The mechanisms responsible for modifications to the wettability characteristics of a SiO2/Al2O3-based ceramic material in terms of a test liquid set comprising of human blood, human blood plasma, glycerol and 4-octonol after high power diode laser (HPDL) treatment have been elucidated. Changes in the contact angle, , and hence the wettability characteristics of the SiO2/Al2O3-based ceramic were attributed primarily to: modifications to the surface roughness of the ceramic resulting from HPDL interaction which accordingly effected reductions in ; the increase in the surface O2 content of the ceramic after HPDL treatment; since an increase in surface O2 content intrinsically brings about a decrease in , and vice versa and the increase in the polar component of the surface energy, due to the HPDL induced surface melting and resolidification which consequently created a partially vitrified microstructure that was seen to augment the wetting action. However, the degree of influence exerted by each mechanism was found to differ markedly. Isolation of each of these mechanisms permitted the magnitude of their influence to be qualitatively determined. Surface energy, by way of microstructural changes, was found to be by far the most predominant element governing the wetting characteristics of the SiO2/Al2O3-based ceramic. To a much lesser extent, surface O2 content, by way of process gas, was also seen to influence to a changes in the wettability characteristics of the SiO2/Al2O3-based ceramic, whilst surface roughness was found to play a minor role in inducing changes in the wettability characteristics
    • 

    corecore