25,995 research outputs found
Work Function of Single-wall Silicon Carbide Nanotube
Using first-principles calculations, we study the work function of single
wall silicon carbide nanotube (SiCNT). The work function is found to be highly
dependent on the tube chirality and diameter. It increases with decreasing the
tube diameter. The work function of zigzag SiCNT is always larger than that of
armchair SiCNT. We reveal that the difference between the work function of
zigzag and armchair SiCNT comes from their different intrinsic electronic
structures, for which the singly degenerate energy band above the Fermi level
of zigzag SiCNT is specifically responsible. Our finding offers potential
usages of SiCNT in field-emission devices.Comment: 3 pages, 3 figure
Nodeless superconductivity in IrPtTe with strong spin-orbital coupling
The thermal conductivity of superconductor IrPtTe
( = 0.05) single crystal with strong spin-orbital coupling was measured down
to 50 mK. The residual linear term is negligible in zero magnetic
field. In low magnetic field, shows a slow field dependence. These
results demonstrate that the superconducting gap of IrPtTe is
nodeless, and the pairing symmetry is likely conventional s-wave, despite the
existence of strong spin-orbital coupling and a quantum critical point.Comment: 5 pages, 4 figure
Morphological characterization of shocked porous material
Morphological measures are introduced to probe the complex procedure of shock
wave reaction on porous material. They characterize the geometry and topology
of the pixelized map of a state variable like the temperature. Relevance of
them to thermodynamical properties of material is revealed and various
experimental conditions are simulated. Numerical results indicate that, the
shock wave reaction results in a complicated sequence of compressions and
rarefactions in porous material. The increasing rate of the total fractional
white area roughly gives the velocity of a compressive-wave-series.
When a velocity is mentioned, the corresponding threshold contour-level of
the state variable, like the temperature, should also be stated. When the
threshold contour-level increases, becomes smaller. The area increases
parabolically with time during the initial period. The curve goes
back to be linear in the following three cases: (i) when the porosity
approaches 1, (ii) when the initial shock becomes stronger, (iii) when the
contour-level approaches the minimum value of the state variable. The area with
high-temperature may continue to increase even after the early
compressive-waves have arrived at the downstream free surface and some
rarefactive-waves have come back into the target body. In the case of energetic
material ... (see the full text)Comment: 3 figures in JPG forma
- …