80,279 research outputs found

    Neutrino oscillations in de Sitter space-time

    Full text link
    We try to understand flavor oscillations and to develop the formulae for describing neutrino oscillations in de Sitter space-time. First, the covariant Dirac equation is investigated under the conformally flat coordinates of de Sitter geometry. Then, we obtain the exact solutions of the Dirac equation and indicate the explicit form of the phase of wave function. Next, the concise formulae for calculating the neutrino oscillation probabilities in de Sitter space-time are given. Finally, The difference between our formulae and the standard result in Minkowski space-time is pointed out.Comment: 13 pages, no figure

    Entropy and specific heat for open systems in steady states

    Full text link
    The fundamental assumption of statistical mechanics is that the system is equally likely in any of the accessible microstates. Based on this assumption, the Boltzmann distribution is derived and the full theory of statistical thermodynamics can be built. In this paper, we show that the Boltzmann distribution in general can not describe the steady state of open system. Based on the effective Hamiltonian approach, we calculate the specific heat, the free energy and the entropy for an open system in steady states. Examples are illustrated and discussed.Comment: 4 pages, 7 figure

    Remark on approximation in the calculation of the primordial spectrum generated during inflation

    Get PDF
    We re-examine approximations in the analytical calculation of the primordial spectrum of cosmological perturbation produced during inflation. Taking two inflation models (chaotic inflation and natural inflation) as examples, we numerically verify the accuracy of these approximations.Comment: 10 pages, 6 figures, to appear in PR

    Systemic risk in dynamical networks with stochastic failure criterion

    Full text link
    Complex non-linear interactions between banks and assets we model by two time-dependent Erd\H{o}s Renyi network models where each node, representing bank, can invest either to a single asset (model I) or multiple assets (model II). We use dynamical network approach to evaluate the collective financial failure---systemic risk---quantified by the fraction of active nodes. The systemic risk can be calculated over any future time period, divided on sub-periods, where within each sub-period banks may contiguously fail due to links to either (i) assets or (ii) other banks, controlled by two parameters, probability of internal failure pp and threshold ThT_h ("solvency" parameter). The systemic risk non-linearly increases with pp and decreases with average network degree faster when all assets are equally distributed across banks than if assets are randomly distributed. The more inactive banks each bank can sustain (smaller ThT_h), the smaller the systemic risk---for some ThT_h values in I we report a discontinuity in systemic risk. When contiguous spreading becomes stochastic (ii) controlled by probability p2p_2---a condition for the bank to be solvent (active) is stochastic---the systemic risk decreases with decreasing p2p_2. We analyse asset allocation for the U.S. banks.Comment: 7 pages, 7 figure

    Non-Thermal Production of WIMPs and the Sub-Galactic Structure of the Universe

    Get PDF
    There is increasing evidence that conventional cold dark matter (CDM) models lead to conflicts between observations and numerical simulations of dark matter halos on sub-galactic scales. Spergel and Steinhardt showed that if the CDM is strongly self-interacting, then the conflicts disappear. However, the assumption of strong self-interaction would rule out the favored candidates for CDM, namely weakly interacting massive particles (WIMPs), such as the neutralino. In this paper we propose a mechanism of non-thermal production of WIMPs and study its implications on the power spectrum. We find that the non-vanishing velocity of the WIMPs suppresses the power spectrum on small scales compared to what it obtained in the conventional CDM model. Our results show that, in this context, WIMPs as candidates for dark matter can work well both on large scales and on sub-galactic scales.Comment: 6 pages, 2 figures; typo corrected; to appear in PR

    Quantum Brayton cycle with coupled systems as working substance

    Full text link
    We explore the quantum version of Brayton cycle with a composite system as the working substance. The actual Brayton cycle consists of two adiabatic and two isobaric processes. Two pressures can be defined in our isobaric process, one corresponds to the external magnetic field (characterized by FxF_x) exerted on the system, while the other corresponds to the coupling constant between the subsystems (characterized by FyF_y). As a consequence, we can define two types of quantum Brayton cycle for the composite system. We find that the subsystem experiences a quantum Brayton cycle in one quantum Brayton cycle (characterized by FxF_x), whereas the subsystem's cycle is of quantum Otto in another Brayton cycle (characterized by FyF_y). The efficiency for the composite system equals to that for the subsystem in both cases, but the work done by the total system are usually larger than the sum of work done by the two subsystems. The other interesting finding is that for the cycle characterized by FyF_y, the subsystem can be a refrigerator while the total system is a heat engine. The result in the paper can be generalized to a quantum Brayton cycle with a general coupled system as the working substance.Comment: 7 pages, 3 figures, accepted by Phys. Rev.

    Dust-to-gas ratio, XCOX_{\rm CO} factor and CO-dark gas in the Galactic anticentre: an observational study

    Full text link
    We investigate the correlation between extinction and H~{\sc i} and CO emission at intermediate and high Galactic latitudes (|b|>10\degr) within the footprint of the Xuyi Schmidt Telescope Photometric Survey of the Galactic anticentre (XSTPS-GAC) on small and large scales. In Paper I (Chen et al. 2014), we present a three-dimensional dust extinction map within the footprint of XSTPS-GAC, covering a sky area of over 6,000\,deg2^2 at a spatial angular resolution of 6\,arcmin. In the current work, the map is combined with data from gas tracers, including H~{\sc i} data from the Galactic Arecibo L-band Feed Array H~{\sc i} survey and CO data from the Planck mission, to constrain the values of dust-to-gas ratio DGR=AV/N(H)DGR=A_V/N({\rm H}) and CO-to-H2\rm H_2 conversion factor XCO=N(H2)/WCOX_{\rm CO}=N({\rm H_2})/W_{\rm CO} for the entire GAC footprint excluding the Galactic plane, as well as for selected star-forming regions (such as the Orion, Taurus and Perseus clouds) and a region of diffuse gas in the northern Galactic hemisphere. For the whole GAC footprint, we find DGR=(4.15±0.01)×10−22DGR=(4.15\pm0.01) \times 10^{-22}\,mag cm2\rm mag\,cm^{2} and XCO=(1.72±0.03)×1020X_{\rm CO}=(1.72 \pm 0.03) \times 10^{20}\,cm−2 (K km s−1)−1\rm cm^{-2}\,(K\,km\,s^{-1})^{-1}. We have also investigated the distribution of "CO-dark" gas (DG) within the footprint of GAC and found a linear correlation between the DG column density and the VV-band extinction: N(DG)≃2.2×1021(AV−AVc) cm−2N({\rm DG}) \simeq 2.2 \times 10^{21} (A_V - A^{c}_{V})\,\rm cm^{-2}. The mass fraction of DG is found to be fDG∼0.55f_{\rm DG}\sim 0.55 toward the Galactic anticentre, which is respectively about 23 and 124 per cent of the atomic and CO-traced molecular gas in the same region. This result is consistent with the theoretical work of Papadopoulos et al. but much larger than that expected in the H2\rm H_2 cloud models by Wolfire et al.Comment: 11 pages, 7 figures, accepted for publication in MNRA

    A Two-Component Explosion Model for the Giant Flare and Radio Afterglow from SGR1806-20

    Full text link
    The brightest giant flare from the soft γ\gamma-ray repeater (SGR) 1806-20 was detected on 2004 December 27. The isotropic-equivalent energy release of this burst is at least one order of magnitude more energetic than those of the two other SGR giant flares. Starting from about one week after the burst, a very bright (∼80\sim 80 mJy), fading radio afterglow was detected. Follow-up observations revealed the multi-frequency light curves of the afterglow and the temporal evolution of the source size. Here we show that these observations can be understood in a two-component explosion model. In this model, one component is a relativistic collimated outflow responsible for the initial giant flare and the early afterglow, and another component is a subrelativistic wider outflow responsible for the late afterglow. We also discuss triggering mechanisms of these two components within the framework of the magnetar model.Comment: 7 pages including 3 figures, emulateapj5.sty, accepted for publication in ApJ Letter
    • …
    corecore