80,279 research outputs found
Neutrino oscillations in de Sitter space-time
We try to understand flavor oscillations and to develop the formulae for
describing neutrino oscillations in de Sitter space-time. First, the covariant
Dirac equation is investigated under the conformally flat coordinates of de
Sitter geometry. Then, we obtain the exact solutions of the Dirac equation and
indicate the explicit form of the phase of wave function. Next, the concise
formulae for calculating the neutrino oscillation probabilities in de Sitter
space-time are given. Finally, The difference between our formulae and the
standard result in Minkowski space-time is pointed out.Comment: 13 pages, no figure
Entropy and specific heat for open systems in steady states
The fundamental assumption of statistical mechanics is that the system is
equally likely in any of the accessible microstates. Based on this assumption,
the Boltzmann distribution is derived and the full theory of statistical
thermodynamics can be built. In this paper, we show that the Boltzmann
distribution in general can not describe the steady state of open system. Based
on the effective Hamiltonian approach, we calculate the specific heat, the free
energy and the entropy for an open system in steady states. Examples are
illustrated and discussed.Comment: 4 pages, 7 figure
Remark on approximation in the calculation of the primordial spectrum generated during inflation
We re-examine approximations in the analytical calculation of the primordial
spectrum of cosmological perturbation produced during inflation. Taking two
inflation models (chaotic inflation and natural inflation) as examples, we
numerically verify the accuracy of these approximations.Comment: 10 pages, 6 figures, to appear in PR
Systemic risk in dynamical networks with stochastic failure criterion
Complex non-linear interactions between banks and assets we model by two
time-dependent Erd\H{o}s Renyi network models where each node, representing
bank, can invest either to a single asset (model I) or multiple assets (model
II). We use dynamical network approach to evaluate the collective financial
failure---systemic risk---quantified by the fraction of active nodes. The
systemic risk can be calculated over any future time period, divided on
sub-periods, where within each sub-period banks may contiguously fail due to
links to either (i) assets or (ii) other banks, controlled by two parameters,
probability of internal failure and threshold ("solvency" parameter).
The systemic risk non-linearly increases with and decreases with average
network degree faster when all assets are equally distributed across banks than
if assets are randomly distributed. The more inactive banks each bank can
sustain (smaller ), the smaller the systemic risk---for some values
in I we report a discontinuity in systemic risk. When contiguous spreading
becomes stochastic (ii) controlled by probability ---a condition for the
bank to be solvent (active) is stochastic---the systemic risk decreases with
decreasing . We analyse asset allocation for the U.S. banks.Comment: 7 pages, 7 figure
Non-Thermal Production of WIMPs and the Sub-Galactic Structure of the Universe
There is increasing evidence that conventional cold dark matter (CDM) models
lead to conflicts between observations and numerical simulations of dark matter
halos on sub-galactic scales. Spergel and Steinhardt showed that if the CDM is
strongly self-interacting, then the conflicts disappear. However, the
assumption of strong self-interaction would rule out the favored candidates for
CDM, namely weakly interacting massive particles (WIMPs), such as the
neutralino. In this paper we propose a mechanism of non-thermal production of
WIMPs and study its implications on the power spectrum. We find that the
non-vanishing velocity of the WIMPs suppresses the power spectrum on small
scales compared to what it obtained in the conventional CDM model. Our results
show that, in this context, WIMPs as candidates for dark matter can work well
both on large scales and on sub-galactic scales.Comment: 6 pages, 2 figures; typo corrected; to appear in PR
Quantum Brayton cycle with coupled systems as working substance
We explore the quantum version of Brayton cycle with a composite system as
the working substance. The actual Brayton cycle consists of two adiabatic and
two isobaric processes. Two pressures can be defined in our isobaric process,
one corresponds to the external magnetic field (characterized by ) exerted
on the system, while the other corresponds to the coupling constant between the
subsystems (characterized by ). As a consequence, we can define two types
of quantum Brayton cycle for the composite system. We find that the subsystem
experiences a quantum Brayton cycle in one quantum Brayton cycle (characterized
by ), whereas the subsystem's cycle is of quantum Otto in another Brayton
cycle (characterized by ). The efficiency for the composite system equals
to that for the subsystem in both cases, but the work done by the total system
are usually larger than the sum of work done by the two subsystems. The other
interesting finding is that for the cycle characterized by , the subsystem
can be a refrigerator while the total system is a heat engine. The result in
the paper can be generalized to a quantum Brayton cycle with a general coupled
system as the working substance.Comment: 7 pages, 3 figures, accepted by Phys. Rev.
Dust-to-gas ratio, factor and CO-dark gas in the Galactic anticentre: an observational study
We investigate the correlation between extinction and H~{\sc i} and CO
emission at intermediate and high Galactic latitudes (|b|>10\degr) within the
footprint of the Xuyi Schmidt Telescope Photometric Survey of the Galactic
anticentre (XSTPS-GAC) on small and large scales. In Paper I (Chen et al.
2014), we present a three-dimensional dust extinction map within the footprint
of XSTPS-GAC, covering a sky area of over 6,000\,deg at a spatial angular
resolution of 6\,arcmin. In the current work, the map is combined with data
from gas tracers, including H~{\sc i} data from the Galactic Arecibo L-band
Feed Array H~{\sc i} survey and CO data from the Planck mission, to constrain
the values of dust-to-gas ratio and CO-to-
conversion factor for the entire GAC
footprint excluding the Galactic plane, as well as for selected star-forming
regions (such as the Orion, Taurus and Perseus clouds) and a region of diffuse
gas in the northern Galactic hemisphere. For the whole GAC footprint, we find
\, and \,. We have also
investigated the distribution of "CO-dark" gas (DG) within the footprint of GAC
and found a linear correlation between the DG column density and the -band
extinction: . The mass fraction of DG is found to be toward
the Galactic anticentre, which is respectively about 23 and 124 per cent of the
atomic and CO-traced molecular gas in the same region. This result is
consistent with the theoretical work of Papadopoulos et al. but much larger
than that expected in the cloud models by Wolfire et al.Comment: 11 pages, 7 figures, accepted for publication in MNRA
A Two-Component Explosion Model for the Giant Flare and Radio Afterglow from SGR1806-20
The brightest giant flare from the soft -ray repeater (SGR) 1806-20
was detected on 2004 December 27. The isotropic-equivalent energy release of
this burst is at least one order of magnitude more energetic than those of the
two other SGR giant flares. Starting from about one week after the burst, a
very bright ( mJy), fading radio afterglow was detected. Follow-up
observations revealed the multi-frequency light curves of the afterglow and the
temporal evolution of the source size. Here we show that these observations can
be understood in a two-component explosion model. In this model, one component
is a relativistic collimated outflow responsible for the initial giant flare
and the early afterglow, and another component is a subrelativistic wider
outflow responsible for the late afterglow. We also discuss triggering
mechanisms of these two components within the framework of the magnetar model.Comment: 7 pages including 3 figures, emulateapj5.sty, accepted for
publication in ApJ Letter
- …