158,309 research outputs found

    Sampled-data synchronization control of dynamical networks with stochastic sampling

    Get PDF
    Copyright @ 2012 IEEEThis technical note is concerned with the sampled-data synchronization control problem for a class of dynamical networks. The sampling period considered here is assumed to be time-varying that switches between two different values in a random way with given probability. The addressed synchronization control problem is first formulated as an exponentially mean-square stabilization problem for a new class of dynamical networks that involve both the multiple probabilistic interval delays (MPIDs) and the sector-bounded nonlinearities (SBNs). Then, a novel Lyapunov functional is constructed to obtain sufficient conditions under which the dynamical network is exponentially mean-square stable. Both Gronwall's inequality and Jenson integral inequality are utilized to substantially simplify the derivation of the main results. Subsequently, a set of sampled-data synchronization controllers is designed in terms of the solution to certain matrix inequalities that can be solved effectively by using available software. Finally, a numerical simulation example is employed to show the effectiveness of the proposed sampled-data synchronization control scheme.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61028008, 60974030, 61134009 and 61104125, the National 973 Program of China under Grant 2009CB320600, and the Alexander von Humboldt Foundation of Germany

    Cellular neural networks, Navier-Stokes equation and microarray image reconstruction

    Get PDF
    Copyright @ 2011 IEEE.Although the last decade has witnessed a great deal of improvements achieved for the microarray technology, many major developments in all the main stages of this technology, including image processing, are still needed. Some hardware implementations of microarray image processing have been proposed in the literature and proved to be promising alternatives to the currently available software systems. However, the main drawback of those proposed approaches is the unsuitable addressing of the quantification of the gene spot in a realistic way without any assumption about the image surface. Our aim in this paper is to present a new image-reconstruction algorithm using the cellular neural network that solves the Navier–Stokes equation. This algorithm offers a robust method for estimating the background signal within the gene-spot region. The MATCNN toolbox for Matlab is used to test the proposed method. Quantitative comparisons are carried out, i.e., in terms of objective criteria, between our approach and some other available methods. It is shown that the proposed algorithm gives highly accurate and realistic measurements in a fully automated manner within a remarkably efficient time
    corecore