31,541 research outputs found
Recommended from our members
Filtering for networked stochastic time-delay systems with sector nonlinearity
Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the filtering problem for a class of discrete-time stochastic nonlinear networked control systems with network-induced incomplete measurements. The incomplete measurements include both the multiple random communication delays and random packet losses, which are modeled by a unified stochastic expression in terms of a set of indicator functions that is dependent on certain stochastic variable. The nonlinear functions are assumed to satisfy the sector nonlinearities. The purpose of the addressed filtering problem is to design a linear filter such that the filtering-error dynamics is exponentially mean-square stable. By using the linear-matrix-inequality (LMI) method and delay-dependent technique, sufficient conditions are derived which are dependent on the occurrence probability of both the random communication delays and missing measurement. The filter gain is then characterized by the solution to a set of LMIs. A simulation example is exploited to demonstrate the effectiveness of the proposed design procedures
Recommended from our members
Robust filtering for gene expression time series data with variance constraints
This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Taylor & Francis Ltd.In this paper, an uncertain discrete-time stochastic system is employed to represent a model for gene regulatory networks from time series data. A robust variance-constrained filtering problem is investigated for a gene expression model with stochastic disturbances and norm-bounded parameter uncertainties, where the stochastic perturbation is in the form of a scalar Gaussian white noise with constant variance and the parameter uncertainties enter both the system matrix and the output matrix. The purpose of the addressed robust filtering problem is to design a linear filter such that, for the admissible bounded uncertainties, the filtering error system is Schur stable and the individual error variance is less than a prespecified upper bound. By using the linear matrix inequality (LMI) technique, sufficient conditions are first derived for ensuring the desired filtering performance for the gene expression model. Then the filter gain is characterized in terms of the solution to a set of LMIs, which can easily be solved by using available software packages. A simulation example is exploited for a gene expression model in order to demonstrate the effectiveness of the proposed design procedures.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grants GR/S27658/01 and EP/C524586/1, the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK under Grants BB/C506264/1 and 100/EGM17735, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany
Recommended from our members
Filtering for nonlinear genetic regulatory networks with stochastic disturbances
In this paper, the filtering problem is investigated for nonlinear genetic regulatory networks with stochastic disturbances and time delays, where the nonlinear function describing the feedback regulation is assumed to satisfy the sector condition, the stochastic perturbation is in the form of a scalar Brownian motion, and the time delays exist in both the translation process and the feedback regulation process. The purpose of the addressed filtering problem is to estimate the true concentrations of the mRNA and protein. Specifically, we are interested in designing a linear filter such that, in the presence of time delays, stochastic disturbances as well as sector nonlinearities, the filtering dynamics of state estimation for the stochastic genetic regulatory network is exponentially mean square stable with a prescribed decay rate lower bound beta. By using the linear matrix inequality (LMI) technique, sufficient conditions are first derived for ensuring the desired filtering performance for the gene regulatory model, and the filter gain is then characterized in terms of the solution to an LMI, which can be easily solved by using standard software packages. A simulation example is exploited in order to illustrate the effectiveness of the proposed design procedures
Recommended from our members
Robust filtering for stochastic genetic regulatory networks with time-varying delay
This is the post print version of the article. The official published version can be obtained from the link - Copyright 2009 Elsevier LtdThis paper addresses the robust filtering problem for a class of linear genetic regulatory networks (GRNs) with stochastic disturbances, parameter uncertainties and time delays. The parameter uncertainties are assumed to reside in a polytopic region, the stochastic disturbance is state-dependent described by a scalar Brownian motion, and the time-varying delays enter into both the translation process and the feedback regulation process. We aim to estimate the true concentrations of mRNA and protein by designing a linear filter such that, for all admissible time delays, stochastic disturbances as well as polytopic uncertainties, the augmented state estimation dynamics is exponentially mean square stable with an expected decay rate. A delay-dependent linear matrix inequality (LMI) approach is first developed to derive sufficient conditions that guarantee the exponential stability of the augmented dynamics, and then the filter gains are parameterized in terms of the solution to a set of LMIs. Note that LMIs can be easily solved by using standard software packages. A simulation example is exploited in order to illustrate the effectiveness of the proposed design procedures.This work was supported in part by the Biotechnology and Biological Sciences Research Council (BBSRC) of the U.K. under Grants BB/C506264/1 and 100/EGM17735, an International Joint Project sponsored by the Royal Society of the U.K., the Research Grants Council of Hong Kong under Grant HKU 7031/06P, the National Natural Science Foundation of China under Grant 60804028, and the Alexander von Humboldt Foundation of Germany
Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey
This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances
on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301,
61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
Drought events and their effects on vegetation productivity in China
Many parts of the world have experienced frequent and severe droughts during the last few decades. Most previous studies examined the effects of specific drought events on vegetation productivity. In this study, we characterized the drought events in China from 1982 to 2012 and assessed their effects on vegetation productivity inferred from satellite data. We first assessed the occurrence, spatial extent, frequency, and severity of drought using the Palmer Drought Severity Index (PDSI). We then examined the impacts of droughts on China\u27s terrestrial ecosystems using the Normalized Difference Vegetation Index (NDVI). During the period 1982–2012, China\u27s land area (%) experiencing drought showed an insignificant trend. However, the drought conditions had been more severe over most regions in northern parts of China since the end of the 1990s, indicating that droughts hit these regions more frequently due to the drier climate. The severe droughts substantially reduced annual and seasonal NDVI. The magnitude and direction of the detrended NDVI under drought stress varied with season and vegetation type. The inconsistency between the regional means of PDSI and detrended NDVI could be attributed to different responses of vegetation to drought and the timing, duration, severity, and lag effects of droughts. The negative effects of droughts on vegetation productivity were partly offset by the enhancement of plant growth resulting from factors such as lower cloudiness, warming climate, and human activities (e.g., afforestation, improved agricultural management practices)
- …