23,548 research outputs found
The late Mesozoic-Cenozoic tectonic evolution of the South China Sea: A petrologic perspective
This paper presents a review of available petrological, geochonological and geochemical data for late Mesozoic to Recent igneous rocks in the South China Sea (SCS) and adjacent regions and a discussion of their petrogeneses and tectonic implications. The integration of these data with available geophysical and other geologic information led to the following tectono-magmatic model for the evolution of the SCS region. The geochemical characteristics of late Mesozoic granitic rocks in the Pearl River Mouth Basin (PRMB), micro-blocks in the SCS, the offshore continental shelf and Dalat zone in southern Vietnam, and the Schwaner Mountains in West Kalimantan, Borneo indicate that these are mainly I-type granites plus a small amount of S-type granites in the PRMB. These granitoids were formed in a continental arc tectonic setting, consistent with the ideas proposed by Holloway (1982) and Taylor and Hayes (1980, 1983), that there existed an Andean-type volcanic arc during later Mesozoic era in the SCS region. The geochonological and geochemical characteristics of the volcanics indicate an early period of bimodal volcanism (60-43. Ma or 32. Ma) at the northern margin of the SCS, followed by a period of relatively passive style volcanism during Cenozoic seafloor spreading (37 or 30-16. Ma) within the SCS, and post-spreading volcanism (tholeiitic series at 17-8. Ma, followed by alkali series from 8. Ma to present) in the entire SCS region. The geodynamic setting of the earlier volcanics was an extensional regime, which resulted from the collision between India and Eurasian plates since the earliest Cenozoic, and that of the post-spreading volcanics may be related to mantle plume magmatism in Hainan Island. In addition, the nascent Hainan plume may have played a significant role in the extension along the northern margin and seafloor spreading in the SCS. © 2014 Elsevier Ltd
Strong energy enhancement in a laser-driven plasma-based accelerator through stochastic friction
Conventionally, friction is understood as an efficient dissipation mechanism
depleting a physical system of energy as an unavoidable feature of any
realistic device involving moving parts, e.g., in mechanical brakes. In this
work, we demonstrate that this intuitive picture loses validity in nonlinear
quantum electrodynamics, exemplified in a scenario where spatially random
friction counter-intuitively results in a highly directional energy flow. This
peculiar behavior is caused by radiation friction, i.e., the energy loss of an
accelerated charge due to the emission of radiation. We demonstrate
analytically and numerically how radiation friction can enhance the performance
of a specific class of laser-driven particle accelerators. We find the
unexpected directional energy boost to be due to the particles' energy being
reduced through friction whence the driving laser can accelerate them more
efficiently. In a quantitative case we find the energy of the laser-accelerated
particles to be enhanced by orders of magnitude.Comment: 14 pages, 3 figure
Electric vehicle market penetration and impacts on energy consumption and CO2 emission in the future: Beijing case
This is the final version of the article. Available from the publisher via the DOI in this record.This study focuses on the development of electric vehicles (EV) in the private passenger vehicle fleet in Beijing (China), analyzes how EVs will penetrate in the market, and estimates the resulting impacts on energy consumption and CO2 emissions up to 2030. A discrete choice model is adopted with consideration of variables including vehicle technical characteristics, fuel prices, charging conditions and support policies. Results show that by 2030, without technological breakthrough and support policies, the market share of EV will be less than 7%, with gasoline dominating the energy structure. With fast technological progress, charging facility establishment, subsidies and tax breaks, EVs will account for 70% of annual new vehicle sales and nearly half of the vehicle stock by 2030, resulting in the substitution of nearly 1 million tons of gasoline with 3.2 billion kWh electricity in 2030 and the reduction of 0.6 million tons of CO2 emission in 2030. Technological progress, charging conditions and fuel prices are the top three drivers. Subsidies play an important role in the early stage, while tax and supply-side policies can be good options as long-term incentivesThis project was co-sponsored by the National Natural Science Foundation of China
(71690240, 71690244, 71373142 and 71673165) and International Science & Technology Cooperation Program
of China (2016YFE0102200). Lin Zhenhong of the US Oakridge National Lab is thanked for his great help in
the modelling
Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications
The South China Sea (SCS) experienced three episodes of seafloor spreading and left three fossil spreading centers presently located at 18°N, 17°N and 15.5°N. Spreading ceased at these three locations during magnetic anomaly 10, 8, and 5c, respectively. Daimao Seamount (16.6. Ma) was formed 10. my after the cessation of the 17°N spreading center. Volcaniclastic rocks and shallow-water carbonate facies near the summit of Daimao Seamount provide key information on the seamount's geologic history. New major and trace element and Sr-Nd-Pb isotopic compositions of basaltic breccia clasts in the volcaniclastics suggest that Daimao and other SCS seamounts have typical ocean island basalt-like composition and possess a 'Dupal' isotopic signature. Our new analyses, combined with available data, indicate that the basaltic foundation of Daimao Seamount was formed through subaqueous explosive volcanic eruptions at 16.6. Ma. The seamount subsided rapidly (>. 0.12. mm/y) at first, allowing the deposition of shallow-water, coral-bearing carbonates around its summit and, then, at a slower rate (<. 0.12. mm/y). We propose that the parental magmas of SCS seamount lavas originated from the Hainan mantle plume. In contrast, lavas from contemporaneous seamounts in other marginal basins in the western Pacific are subduction-related
Recommended from our members
Numerical investigations on transient behaviours of two 3-D freely floating structures by using a fully nonlinear method
Two floating structures in close proximity are very commonly seen in offshore engineering. They are often subjected to steep waves and, therefore, the transient effects on their hydrodynamic features are of great concern. This paper uses the quasi arbitrary Lagrangian-Eulerian finite element method (QALE-FEM), based on the fully nonlinear potential theory (FNPT), to numerically investigate the interaction between two three-dimensional (3D) floating structures, which undergoes motions with 6 degrees of freedom (DOFs), and are subjected to waves with different incident angles. The transient behaviours of floating structures, the effect of the accompanied structures and the nonlinearity on the motion of and the wave loads on the structures are the main focuses of the study
Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator
Photo-transmutation of long-lived nuclear waste induced by high-charge
relativistic electron beam (e-beam) from laser plasma accelerator is
demonstrated. Collimated relativistic e-beam with a high charge of
approximately 100 nC is produced from high-intensity laser interaction with
near-critical-density (NCD) plasma. Such e-beam impinges on a high-Z convertor
and then radiates energetic bremsstrahlung photons with flux approaching
10^{11} per laser shot. Taking long-lived radionuclide ^{126}Sn as an example,
the resulting transmutation reaction yield is the order of 10^{9} per laser
shot, which is two orders of magnitude higher than obtained from previous
studies. It is found that at lower densities, tightly focused laser irradiating
relatively longer NCD plasmas can effectively enhance the transmutation
efficiency. Furthermore, the photo-transmutation is generalized by considering
mixed-nuclide waste samples, which suggests that the laser-accelerated
high-charge e-beam could be an efficient tool to transmute long-lived nuclear
waste.Comment: 13 pages, 8 figures, it has been submitted to Physics of Plasm
- …