23,968 research outputs found
Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors
The superconducting gap is the fundamental parameter that characterizes the
superconducting state, and its symmetry is a direct consequence of the
mechanism responsible for Cooper pairing. Here we discuss about angle-resolved
photoemission spectroscopy measurements of the superconducting gap in the
Fe-based high-temperature superconductors. We show that the superconducting gap
is Fermi surface dependent and nodeless with small anisotropy, or more
precisely, a function of momentum. We show that while this observation is
inconsistent with weak coupling approaches for superconductivity in these
materials, it is well supported by strong coupling models and global
superconducting gaps. We also suggest that the strong anisotropies measured by
other probes sensitive to the residual density of states are not related to the
pairing interaction itself, but rather emerge naturally from the smaller
lifetime of the superconducting Cooper pairs that is a direct consequence of
the momentum dependent interband scattering inherent to these materials.Comment: 7 pages, 5 figure
Disentangling the surface and bulk electronic structures of LaOFeAs
We performed a comprehensive angle-resolved photoemission spectroscopy study
of the electronic band structure of LaOFeAs single crystals. We found that
samples cleaved at low temperature show an unstable and highly complicated band
structure, whereas samples cleaved at high temperature exhibit a stable and
clearer electronic structure. Using \emph{in-situ} surface doping with K and
supported by first-principles calculations, we identify both surface and bulk
bands. Our assignments are confirmed by the difference in the temperature
dependence of the bulk and surface states.Comment: 5 pages, 5 figure
Mass Hierarchy Resolution in Reactor Anti-neutrino Experiments: Parameter Degeneracies and Detector Energy Response
Determination of the neutrino mass hierarchy using a reactor neutrino
experiment at 60 km is analyzed. Such a measurement is challenging due to
the finite detector resolution, the absolute energy scale calibration, as well
as the degeneracies caused by current experimental uncertainty of . The standard method is compared with a proposed Fourier
transformation method. In addition, we show that for such a measurement to
succeed, one must understand the non-linearity of the detector energy scale at
the level of a few tenths of percent.Comment: 7 pages, 6 figures, accepted by PR
Observation of momentum-confined in-gap impurity state in BaKFeAs: evidence for anti-phase pairing
We report the observation by angle-resolved photoemission spectroscopy of an
impurity state located inside the superconducting gap of
BaKFeAs and vanishing above the superconducting
critical temperature, for which the spectral weight is confined in momentum
space near the Fermi wave vector positions. We demonstrate, supported by
theoretical simulations, that this in-gap state originates from weak
non-magnetic scattering between bands with opposite sign of the superconducting
gap phase. This weak scattering, likely due to off-plane Ba/K disorders, occurs
mostly among neighboring Fermi surfaces, suggesting that the superconducting
gap phase changes sign within holelike (and electronlike) bands. Our results
impose severe restrictions on the models promoted to explain high-temperature
superconductivity in these materials.Comment: 8 pages, 5 figures. Accepted for publication in Physical Review
- …