26,209 research outputs found

    Suppressing decoherence and improving entanglement by quantum-jump-based feedback control in two-level systems

    Full text link
    We study the quantum-jump-based feedback control on the entanglement shared between two qubits with one of them subject to decoherence, while the other qubit is under the control. This situation is very relevant to a quantum system consisting of nuclear and electron spins in solid states. The possibility to prolong the coherence time of the dissipative qubit is also explored. Numerical simulations show that the quantum-jump-based feedback control can improve the entanglement between the qubits and prolong the coherence time for the qubit subject directly to decoherence

    Fermi resonance-algebraic model for molecular vibrational spectra

    Full text link
    A Fermi resonance-algebraic model is proposed for molecular vibrations, where a U(2) algebra is used for describing the vibrations of each bond, and Fermi resonances between stretching and bending modes are taken into account. The model for a bent molecule XY_2 and a molecule XY_3 is successfully applied to fit the recently observed vibrational spectrum of the water molecule and arsine (AsH_3), respectively, and results are compared with those of other models. Calculations show that algebraic approaches can be used as an effective method for describing molecular vibrations with small standard deviations

    Necessary and sufficient conditions for local creation of quantum discord

    Full text link
    We show that a local channel cannot create quantum discord (QD) for zero QD states of size d≥3d\geq3 if and only if either it is a completely decohering channel or it is a nontrivial isotropic channel. For the qubit case this propertiy is additionally characteristic to the completely decohering channel or the commutativity-preserving unital channel. In particular, the exact forms of the completely decohering channel and the commutativity-preserving unital qubit channel are proposed. Consequently, our results confirm and improve the conjecture proposed by X. Hu et al. for the case of d≥3d\geq3 and improve the result proposed by A. Streltsov et al. for the qubit case. Furthermore, it is shown that a local channel nullifies QD in any state if and only if it is a completely decohering channel. Based on our results, some protocols of quantum information processing issues associated with QD, especially for the qubit case, would be experimentally accessible.Comment: 8 page
    • …
    corecore