7,837 research outputs found

    Phase-reference VLBI Observations of the Compact Steep-Spectrum Source 3C 138

    Full text link
    We investigate a phase-reference VLBI observation that was conducted at 15.4 GHz by fast switching VLBA antennas between the compact steep-spectrum radio source 3C 138 and the quasar PKS 0528+134 which are about 4∘^\circ away on the sky. By comparing the phase-reference mapping with the conventional hybrid mapping, we demonstrate the feasibility of high precision astrometric measurements for sources separated by 4∘^\circ. VLBI phase-reference mapping preserves the relative phase information, and thus provides an accurate relative position between 3C 138 and PKS 0528+134 of Δα=−9m46s.531000±0s.000003\Delta\alpha=-9^m46^s.531000\pm0^s.000003 and Δδ=3∘6′26′′.90311±0′′.00007\Delta\delta=3^\circ6^\prime26^{\prime\prime}.90311\pm0^{\prime\prime}.00007 (J2000.0) in right ascension and declination, respectively. This gives an improved position of the nucleus (component A) of 3C 138 in J2000.0 to be RA=05h21m9s.88574805^h 21^m 9^s.885748 and Dec=16∘38′22′′.0526116^\circ 38' 22''.05261 under the assumption that the position of calibrator PKS 0528+134 is correct. We further made a hybrid map by performing several iterations of CLEAN and self-calibration on the phase-referenced data with the phase-reference map as an input model for the first phase self-calibration. Compared with the hybrid map from the limited visibility data directly obtained from fringe fitting 3C 138 data, this map has a similar dynamic range, but a higher angular resolution. Therefore, phase-reference technique is not only a means of phase connection, but also a means of increasing phase coherence time allowing self-calibration technique to be applied to much weaker sources.Comment: 9 pages plus 2 figures, accepted by PASJ (Vol.58 No.6

    An Economic Aspect of Device-to-Device Assisted Offloading in Cellular Networks

    Get PDF
    Traffic offloading via device-to-device (D2D) communications has been proposed to alleviate the traffic burden on base stations (BSs) and to improve the spectral and energy efficiency of cellular networks. The success of D2D communications relies on the willingness of users to share contents. In this paper, we study the economic aspect of traffic offloading via content sharing among multiple devices and propose an incentive framework for D2D assisted offloading. In the proposed incentive framework, the operator improves its overall profit, defined as the network economic efficiency (ECE), by encouraging users to act as D2D transmitters (D2D-Txs) which broadcast their popular contents to nearby users. We analytically characterize D2D assisted offloading in cellular networks for two operating modes: 1) underlay mode and 2) overlay mode. We model the optimization of network ECE as a two-stage Stackelberg game, considering the densities of cellular users and D2D-Tx’s, the operator’s incentives and the popularity of contents. The closedform expressions of network ECE for both underlay and overlay modes of D2D communications are obtained. Numerical results show that the achievable network ECE of the proposed incentive D2D assisted offloading network can be significantly improved with respect to the conventional cellular networks where the D2D communications are disabled

    An Economic Aspect of Device-to-Device Assisted Offloading in Cellular Networks

    Get PDF
    Traffic offloading via device-to-device (D2D) communications has been proposed to alleviate the traffic burden on base stations (BSs) and to improve the spectral and energy efficiency of cellular networks. The success of D2D communications relies on the willingness of users to share contents. In this paper, we study the economic aspect of traffic offloading via content sharing among multiple devices and propose an incentive framework for D2D assisted offloading. In the proposed incentive framework, the operator improves its overall profit, defined as the network economic efficiency (ECE), by encouraging users to act as D2D transmitters (D2D-Txs) which broadcast their popular contents to nearby users. We analytically characterize D2D assisted offloading in cellular networks for two operating modes: 1) underlay mode and 2) overlay mode. We model the optimization of network ECE as a two-stage Stackelberg game, considering the densities of cellular users and D2D-Tx’s, the operator’s incentives and the popularity of contents. The closedform expressions of network ECE for both underlay and overlay modes of D2D communications are obtained. Numerical results show that the achievable network ECE of the proposed incentive D2D assisted offloading network can be significantly improved with respect to the conventional cellular networks where the D2D communications are disabled

    Two years of measurements of atmospheric total gaseous mercury (TGM) at a remote site in Mt. Changbai area, Northeastern China

    Get PDF
    Total gaseous mercury (TGM) was continuously monitored at a remote site (CBS) in Mt. Changbai area, Northeastern China from 24 October 2008 to 31 October 2010. The overall mean TGM concentration was 1.60±0.51 ng m<sup>−3</sup>, which is lower than those reported from remote sites in Eastern, Southwestern, and Western China, indicating a relatively lower regional anthropogenic mercury (Hg) emission intensity in Northeastern China. Measurements at a site in the vicinity (~1.2 km) of CBS station from August 2005 to July 2006 showed a significantly higher mean TGM concentration of 3.58±1.78 ng m<sup>−3</sup>. The divergent result was partially attributed to fluctuations in the relatively frequencies of surface winds during the two study periods and moreover an effect of local emission sources. The temporal variation of TGM at CBS was influenced by regional sources as well as long-range transported Hg. Regional sources frequently contributing to episodical high TGM concentrations were pin-pointed as a large iron mining district in Northern North Korea and two large power plants and urban areas to the southwest of the sampling site. Source areas in Beijing, Tianjin, southern Liaoning, Hebei, northwestern Shanxi, and northwestern Shandong were found to contribute to elevated TGM observations at CBS via long-range transport. Diurnal pattern of TGM at CBS was mainly controlled by regional sources, likely as well as intrusion of air masses from the free troposphere during summer season. There are no consistent seasonal pattern of TGM at CBS, and the monthly TGM variations showed links with the patterns of regional air movements and long-range transport
    • …
    corecore