18,191 research outputs found
Mesozoic magmatism in Tengchong block, Southeastern Tibet, and its tectonic implications
Abstract HKT-ISTP 2013
A
Experimental signatures of 3d fractional topological insulators
In this work we explore experimental signatures of fractional topological
insulators in three dimensions. These are states of matter with a fully gapped
bulk that host exotic gapless surface states and fractionally charged
quasiparticles. They are partially characterized by a non-trivial
magneto-electric response while preserving time reversal. We describe how these
phases appear in a variety of probes including photoemmission, tunneling, and
quantum oscillations. We also discuss the effects of doping and proximate
superconductivity. We argue that despite our current theoretical inability to
predict materials where such phases will realized, they should be relatively
easy to detect experimentally.Comment: 6 pages, 1 figur
Recommended from our members
Fault Inductance Based Protection for DC Distribution Systems
The fault protection is a critical element to ensure the reliable and secure operation of DC distribution systems. Most DC distribution systems are tightly coupled systems with low line impedances which may result in fast current increase during a fault. Thus, it is challenging to develop a fast and reliable DC fault protection method. This paper proposes and develops a novel fault inductance based DC protection method without communication between protection units at different locations. The performance of the developed protection algorithm was validated in a Real-Time Hardware-In-the-Loop (RTHIL) test platform. The testing results indicate that the developed inductance based fault location algorithm detects and locates faults with fast speed and high accuracy. Preliminary sensitivity analysis on measurement errors are also conducted to study impacts on accuracy of estimated fault inductance.Center for Electromechanic
Microscopic origin of local moments in a zinc-doped high- superconductor
The formation of a local moment around a zinc impurity in the high-
cuprate superconductors is studied within the framework of the bosonic
resonating-valence-bond (RVB) description of the model. A topological
origin of the local moment has been shown based on the phase string effect in
the bosonic RVB theory. It is found that such an moment distributes
near the zinc in a form of staggered magnetic moments at the copper sites. The
corresponding magnetic properties, including NMR spin relaxation rate, uniform
spin susceptibility, and dynamic spin susceptibility, etc., calculated based on
the theory, are consistent with the experimental measurements. Our work
suggests that the zinc substitution in the cuprates provide an important
experimental evidence for the RVB nature of local physics in the original (zinc
free) state.Comment: The topological reason of local moment formation is given. One figure
is adde
A new class of -d topological superconductor with topological classification
The classification of topological states of matter depends on spatial
dimension and symmetry class. For non-interacting topological insulators and
superconductors the topological classification is obtained systematically and
nontrivial topological insulators are classified by either integer or .
The classification of interacting topological states of matter is much more
complicated and only special cases are understood. In this paper we study a new
class of topological superconductors in dimensions which has
time-reversal symmetry and a spin conservation symmetry. We
demonstrate that the superconductors in this class is classified by
when electron interaction is considered, while the
classification is without interaction.Comment: 5 pages main text and 3 pages appendix. 1 figur
Topological aspect of graphene physics
Topological aspects of graphene are reviewed focusing on the massless Dirac
fermions with/without magnetic field. Doubled Dirac cones of graphene are
topologically protected by the chiral symmetry. The quantum Hall effect of the
graphene is described by the Berry connection of a manybody state by the filled
Landau levels which naturally possesses non-Abelian gauge structures. A generic
principle of the topologically non trivial states as the bulk-edge
correspondence is applied for graphene with/without magnetic field and explain
some of the characteristic boundary phenomena of graphene.Comment: 12 pages, 8 figures. Proceedings for HMF-1
- …