49,955 research outputs found

    Proton Spin in Chiral Quark Models

    Get PDF
    The spin and flavor fractions of constituent quarks in the proton are obtained from their chiral fluctuations involving Goldstone bosons. SU(3) flavor symmetry breaking suggested by the mass difference between the strange and up, down quarks is included, and this improves the agreement with the data markedly.Comment: 13 pages, 1 table, no figures, LaTex, eta & eta' parts change

    Quark Orbital Angular Momentum in the Baryon

    Full text link
    Analytical and numerical results, for the orbital and spin content carried by different quark flavors in the baryons, are given in the chiral quark model with symmetry breaking. The reduction of the quark spin, due to the spin dilution in the chiral splitting processes, is transferred into the orbital motion of quarks and antiquarks. The orbital angular momentum for each quark flavor in the proton as a function of the partition factor κ\kappa and the chiral splitting probability aa is shown. The cancellation between the spin and orbital contributions in the spin sum rule and in the baryon magnetic moments is discussed.Comment: 26 pages, 3 figures, revised version with minor eq. no and ref. no. corrections. Discussion on the Λ\Lambda spin and a new ref. are adde

    On the predominant mechanisms active during the high power diode laser modification of the wettability characteristics of an SiO2/Al2O3-based ceramic material

    Get PDF
    The mechanisms responsible for modifications to the wettability characteristics of a SiO2/Al2O3-based ceramic material in terms of a test liquid set comprising of human blood, human blood plasma, glycerol and 4-octonol after high power diode laser (HPDL) treatment have been elucidated. Changes in the contact angle, , and hence the wettability characteristics of the SiO2/Al2O3-based ceramic were attributed primarily to: modifications to the surface roughness of the ceramic resulting from HPDL interaction which accordingly effected reductions in ; the increase in the surface O2 content of the ceramic after HPDL treatment; since an increase in surface O2 content intrinsically brings about a decrease in , and vice versa and the increase in the polar component of the surface energy, due to the HPDL induced surface melting and resolidification which consequently created a partially vitrified microstructure that was seen to augment the wetting action. However, the degree of influence exerted by each mechanism was found to differ markedly. Isolation of each of these mechanisms permitted the magnitude of their influence to be qualitatively determined. Surface energy, by way of microstructural changes, was found to be by far the most predominant element governing the wetting characteristics of the SiO2/Al2O3-based ceramic. To a much lesser extent, surface O2 content, by way of process gas, was also seen to influence to a changes in the wettability characteristics of the SiO2/Al2O3-based ceramic, whilst surface roughness was found to play a minor role in inducing changes in the wettability characteristics

    On the "Security analysis and improvements of arbitrated quantum signature schemes"

    Full text link
    Recently, Zou et al. [Phys. Rev. A 82, 042325 (2010)] pointed out that two arbitrated quantum signature (AQS) schemes are not secure, because an arbitrator cannot arbitrate the dispute between two users when a receiver repudiates the integrity of a signature. By using a public board, they try to propose two AQS schemes to solve the problem. This work shows that the same security problem may exist in their schemes and also a malicious party can reveal the other party's secret key without being detected by using the Trojan-horse attacks. Accordingly, two basic properties of a quantum signature, i.e. unforgeability and undeniability, may not be satisfied in their scheme
    • …
    corecore