169,007 research outputs found

    Environment identification based memory scheme for estimation of distribution algorithms in dynamic environments

    Get PDF
    Copyright @ Springer-Verlag 2010.In estimation of distribution algorithms (EDAs), the joint probability distribution of high-performance solutions is presented by a probability model. This means that the priority search areas of the solution space are characterized by the probability model. From this point of view, an environment identification-based memory management scheme (EI-MMS) is proposed to adapt binary-coded EDAs to solve dynamic optimization problems (DOPs). Within this scheme, the probability models that characterize the search space of the changing environment are stored and retrieved to adapt EDAs according to environmental changes. A diversity loss correction scheme and a boundary correction scheme are combined to counteract the diversity loss during the static evolutionary process of each environment. Experimental results show the validity of the EI-MMS and indicate that the EI-MMS can be applied to any binary-coded EDAs. In comparison with three state-of-the-art algorithms, the univariate marginal distribution algorithm (UMDA) using the EI-MMS performs better when solving three decomposable DOPs. In order to understand the EI-MMS more deeply, the sensitivity analysis of parameters is also carried out in this paper.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant 60774064, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01

    Population-based incremental learning with associative memory for dynamic environments

    Get PDF
    Copyright © 2007 IEEE. Reprinted from IEEE Transactions on Evolutionary Computation. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In recent years there has been a growing interest in studying evolutionary algorithms (EAs) for dynamic optimization problems (DOPs) due to its importance in real world applications. Several approaches, such as the memory and multiple population schemes, have been developed for EAs to address dynamic problems. This paper investigates the application of the memory scheme for population-based incremental learning (PBIL) algorithms, a class of EAs, for DOPss. A PBIL-specific associative memory scheme, which stores best solutions as well as corresponding environmental information in the memory, is investigated to improve its adaptability in dynamic environments. In this paper, the interactions between the memory scheme and random immigrants, multi-population, and restart schemes for PBILs in dynamic environments are investigated. In order to better test the performance of memory schemes for PBILs and other EAs in dynamic environments, this paper also proposes a dynamic environment generator that can systematically generate dynamic environments of different difficulty with respect to memory schemes. Using this generator a series of dynamic environments are generated and experiments are carried out to compare the performance of investigated algorithms. The experimental results show that the proposed memory scheme is efficient for PBILs in dynamic environments and also indicate that different interactions exist between the memory scheme and random immigrants, multi-population schemes for PBILs in different dynamic environments

    Dual population-based incremental learning for problem optimization in dynamic environments

    Get PDF
    Copyright @ 2003 Asia Pacific Symposium on Intelligent and Evolutionary SystemsIn recent years there is a growing interest in the research of evolutionary algorithms for dynamic optimization problems since real world problems are usually dynamic, which presents serious challenges to traditional evolutionary algorithms. In this paper, we investigate the application of Population-Based Incremental Learning (PBIL) algorithms, a class of evolutionary algorithms, for problem optimization under dynamic environments. Inspired by the complementarity mechanism in nature, we propose a Dual PBIL that operates on two probability vectors that are dual to each other with respect to the central point in the search space. Using a dynamic problem generating technique we generate a series of dynamic knapsack problems from a randomly generated stationary knapsack problem and carry out experimental study comparing the performance of investigated PBILs and one traditional genetic algorithm. Experimental results show that the introduction of dualism into PBIL improves its adaptability under dynamic environments, especially when the environment is subject to significant changes in the sense of genotype space

    Intersystem soft handover for converged DVB-H and UMTS networks

    Get PDF
    Digital video broadcasting for handhelds (DVB-H) is the standard for broadcasting Internet Protocol (IP) data services to mobile portable devices. To provide interactive services for DVB-H, the Universal Mobile Telecommunications System (UMTS) can be used as a terrestrial interaction channel for the unidirectional DVB-H network. The converged DVB-H and UMTS network can be used to address the congestion problems due to the limited multimedia channel accesses of the UMTS network. In the converged network, intersystem soft handover between DVB-H and UMTS is needed for an optimum radio resource allocation, which reduces network operation cost while providing the required quality of service. This paper deals with the intersystem soft handover between DVB-H and UMTS in such a converged network. The converged network structure is presented. A novel soft handover scheme is proposed and evaluated. After considering the network operation cost, the performance tradeoff between the network quality of service and the network operation cost for the intersystem soft handover in the converged network is modeled using a stochastic tree and analyzed using a numerical simulation. The results show that the proposed algorithm is feasible and has the potential to be used for implementation in the real environment

    Experimental study on population-based incremental learning algorithms for dynamic optimization problems

    Get PDF
    Copyright @ Springer-Verlag 2005.Evolutionary algorithms have been widely used for stationary optimization problems. However, the environments of real world problems are often dynamic. This seriously challenges traditional evolutionary algorithms. In this paper, the application of population-based incremental learning (PBIL) algorithms, a class of evolutionary algorithms, for dynamic problems is investigated. Inspired by the complementarity mechanism in nature a Dual PBIL is proposed, which operates on two probability vectors that are dual to each other with respect to the central point in the genotype space. A diversity maintaining technique of combining the central probability vector into PBIL is also proposed to improve PBILs adaptability in dynamic environments. In this paper, a new dynamic problem generator that can create required dynamics from any binary-encoded stationary problem is also formalized. Using this generator, a series of dynamic problems were systematically constructed from several benchmark stationary problems and an experimental study was carried out to compare the performance of several PBIL algorithms and two variants of standard genetic algorithm. Based on the experimental results, we carried out algorithm performance analysis regarding the weakness and strength of studied PBIL algorithms and identified several potential improvements to PBIL for dynamic optimization problems.This work was was supported by UK EPSRC under Grant GR/S79718/01

    Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled cross-validation scheme

    Get PDF
    The controlled outflows from a reservoir or dam are highly dependent on the decisions made by the reservoir operators, instead of a natural hydrological process. Difference exists between the natural upstream inflows to reservoirs and the controlled outflows from reservoirs that supply the downstream users. With the decision maker's awareness of changing climate, reservoir management requires adaptable means to incorporate more information into decision making, such as water delivery requirement, environmental constraints, dry/wet conditions, etc. In this paper, a robust reservoir outflow simulation model is presented, which incorporates one of the well-developed data-mining models (Classification and Regression Tree) to predict the complicated human-controlled reservoir outflows and extract the reservoir operation patterns. A shuffled cross-validation approach is further implemented to improve CART's predictive performance. An application study of nine major reservoirs in California is carried out. Results produced by the enhanced CART, original CART, and random forest are compared with observation. The statistical measurements show that the enhanced CART and random forest overperform the CART control run in general, and the enhanced CART algorithm gives a better predictive performance over random forest in simulating the peak flows. The results also show that the proposed model is able to consistently and reasonably predict the expert release decisions. Experiments indicate that the release operation in the Oroville Lake is significantly dominated by SWP allocation amount and reservoirs with low elevation are more sensitive to inflow amount than others
    corecore