157,186 research outputs found
Can cold quark matter be solid?
The state of cold quark matter really challenges both astrophysicists and
particle physicists, even many-body physicists. It is conventionally suggested
that BCS-like color superconductivity occurs in cold quark matter; however,
other scenarios with a ground state rather than of Fermi gas could still be
possible. It is addressed that quarks are dressed and clustering in cold quark
matter at realistic baryon densities of compact stars, since a weakly coupling
treatment of the interaction between constituent quarks would not be reliable.
Cold quark matter is conjectured to be in a solid state if thermal kinematic
energy is much lower than the interaction energy of quark clusters, and such a
state could be relevant to different manifestations of pulsar-like compact
stars.Comment: Proceedings of IWARA2009 (IJMP D
Can the age discrepancies of neutron stars be circumvented by an accretion-assisted torque?
It is found that 1E 1207.4-5209 could be a low-mass bare strange star if its
small radius or low altitude cyclotron formation can be identified. The age
problems of five sources could be solved by a fossil-disk-assisted torque. The
magnetic dipole radiation dominates the evolution of PSR B1757-24 at present,
and the others are in propeller (or tracking) phases.Comment: ApJL accepted, or at
http://vega.bac.pku.edu.cn/~rxxu/publications/index_P.ht
The timing behavior of magnetar Swift J1822.3-1606: timing noise or a decreasing period derivative?
The different timing results of the magnetar Swift J1822.3-1606 is analyzed
and understood theoretically. It is pointed that different timing solutions are
caused not only by timing noise, but also that the period derivative is
decreasing after outburst. Both the decreasing period derivative and the large
timing noise may be originated from wind braking of the magnetar. Future timing
of Swift J1822.3-1606 will help us make clear whether its period derivative is
decreasing with time or not.Comment: 5 pages, 1 figure. Accepted by Research in Astronomy and Astrophysic
Ultra High Energy Cosmic Rays: Strangelets? -- Extra dimensions, TeV-scale black holes and strange matter
The conjecture that ultra high energy cosmic rays (UHECRs) are actually
strangelets is discussed. Besides the reason that strangelets can do as cosmic
rays beyond the GZK-cutoff, another argument to support the conjecture is
addressed in this letter via the study of formation of TeV-scale microscopic
black holes when UHECRs bombarding bare strange stars. It is proposed that the
exotic quark surface of a bare strange star could be an effective
astro-laboratory in the investigations of the extra dimensions and of the
detection of ultra-high energy neutrino fluxes. The flux of neutrinos (and
other point-like particles) with energy >2.3 x 10^{20} eV could be expected to
be smaller than 10^{-26} cm^{-2}$ s^{-1} if there are two extra spatial
dimensions.Comment: accepted by Chin. Phys. Lett., or at
http://vega.bac.pku.edu.cn/~rxxu/publications/index_P.ht
- …
