254 research outputs found

    Formation of quantum dots in the potential fluctuations of InGaAs heterostructures probed by scanning gate microscopy

    Full text link
    The disordered potential landscape in an InGaAs/InAlAs two-dimensional electron gas patterned into narrow wires is investigated by means of scanning gate microscopy. It is found that scanning a negatively charged tip above particular sites of the wires produces conductance oscillations that are periodic in the tip voltage. These oscillations take the shape of concentric circles whose number and diameter increase for more negative tip voltages until full depletion occurs in the probed region. These observations cannot be explained by charging events in material traps, but are consistent with Coulomb blockade in quantum dots forming when the potential fluctuations are raised locally at the Fermi level by the gating action of the tip. This interpretation is supported by simple electrostatic simulations in the case of a disorder potential induced by ionized dopants. This work represents a local investigation of the mechanisms responsible for the disorder-induced metal-to-insulator transition observed in macroscopic two-dimensional electron systems at low enough density

    Scanning Gate Spectroscopy of transport across a Quantum Hall Nano-Island

    Full text link
    We explore transport across an ultra-small Quantum Hall Island (QHI) formed by closed quan- tum Hall edge states and connected to propagating edge channels through tunnel barriers. Scanning gate microscopy and scanning gate spectroscopy are used to first localize and then study a single QHI near a quantum point contact. The presence of Coulomb diamonds in the spectroscopy con- firms that Coulomb blockade governs transport across the QHI. Varying the microscope tip bias as well as current bias across the device, we uncover the QHI discrete energy spectrum arising from electronic confinement and we extract estimates of the gradient of the confining potential and of the edge state velocity.Comment: 13 pages, 3 figure

    Scanning-gate microscopy of semiconductor nanostructures: an overview

    Full text link
    This paper presents an overview of scanning-gate microscopy applied to the imaging of electron transport through buried semiconductor nanostructures. After a brief description of the technique and of its possible artifacts, we give a summary of some of its most instructive achievements found in the literature and we present an updated review of our own research. It focuses on the imaging of GaInAs-based quantum rings both in the low magnetic field Aharonov-Bohm regime and in the high-field quantum Hall regime. In all of the given examples, we emphasize how a local-probe approach is able to shed new, or complementary, light on transport phenomena which are usually studied by means of macroscopic conductance measurements.Comment: Invited talk by SH at 39th "Jaszowiec" International School and Conference on the Physics of Semiconductors, Krynica-Zdroj, Poland, June 201

    Imaging Electron Wave Functions Inside Open Quantum Rings

    Full text link
    Combining Scanning Gate Microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of electron probability density ∣Ψ∣2(x,y)|\Psi|^{2}(x,y) in embedded mesoscopic quantum rings (QRs). The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wavefunction interferences. Simulations of both ∣Ψ∣2(x,y)|\Psi|^{2}(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to ∣Ψ∣2(x,y)|\Psi|^{2}(x,y).Comment: new titl

    Transport inefficiency in branched-out mesoscopic networks: An analog of the Braess paradox

    Full text link
    We present evidence for a counter-intuitive behavior of semiconductor mesoscopic networks that is the analog of the Braess paradox encountered in classical networks. A numerical simulation of quantum transport in a two-branch mesoscopic network reveals that adding a third branch can paradoxically induce transport inefficiency that manifests itself in a sizable conductance drop of the network. A scanning-probe experiment using a biased tip to modulate the transmission of one branch in the network reveals the occurrence of this paradox by mapping the conductance variation as a function of the tip voltage and position.Comment: 2nd version with minor stylistic corrections. To appear in Phys. Rev. Lett.: Editorially approved for publication 6 January 201

    Structural determination of bilayer graphene on SiC(0001) using synchrotron radiation photoelectron diffraction

    Get PDF
    In recent years there has been growing interest in the electronic properties of 'few layer' graphene films. Twisted layers, different stacking and register with the substrate result in remarkable unconventional couplings. These distinctive electronic behaviours have been attributed to structural differences, even if only a few structural determinations are available. Here we report the results of a structural study of bilayer graphene on the Si-terminated SiC(0001) surface, investigated using synchrotron radiation-based photoelectron diffraction and complemented by angle-resolved photoemission mapping of the electronic valence bands. Photoelectron diffraction angular distributions of the graphene C 1s component have been measured at different kinetic energies and compared with the results of multiple scattering simulations for model structures. The results confirm that bilayer graphene on SiC(0001) has a layer spacing of 3.48 Å and an AB (Bernal) stacking, with a distance between the C buffer layer and the first graphene layer of 3.24 Å. Our work generalises the use of a versatile and precise diffraction method capable to shed light on the structure of low-dimensional materials

    Long dephasing time and high temperature ballistic transport in an InGaAs open quantum dot

    Full text link
    We report on measurements of the magnetoconductance of an open circular InGaAs quantum dot between 1.3K and 204K. We observe two types of magnetoconductance fluctuations: universal conductance fluctuations (UCFs), and 'focusing' fluctuations related to ballistic trajectories between openings. The electron phase coherence time extracted from UCFs amplitude is larger than in GaAs/AlGaAs quantum dots and follows a similar temperature dependence (between T^-1 and T^-2). Below 150K, the characteristic length associated with 'focusing' fluctuations shows a slightly different temperature dependence from that of the conductivity.Comment: 6 pages, 4 figures, proceedings of ICSNN2002, to appear in Physica

    Planning the electron traffic in semiconductor networks: A mesoscopic analog of the Braess paradox encountered in road networks

    Full text link
    By combining quantum simulations of electron transport and scanning-gate microscopy, we have shown that the current transmitted through a semiconductor two-path rectangular network in the ballistic and coherent regimes of transport can be paradoxically degraded by adding a third path to the network. This is analogous to the Braess paradox occurring in classical networks. Simulations reported here enlighten the role played by congestion in the network.Comment: 31st Int. Conf. Phys. Semiconductors, Zurich, July-August 201
    • …
    corecore