1,007 research outputs found

    Fabrication and transport critical currents of multifilamentary MgB2/Fe wires and tapes

    Full text link
    Multifilamentary MgB2/Fe wires and tapes with high transport critical current densities have been fabricated using a straightforward powder-in-tube (PIT) process. After annealing, we measured transport jc values up to 1.1 * 105 A/cm2 at 4.2 K and in a field of 2 T in a MgB2/Fe square wire with 7 filaments fabricated by two-axial rolling, and up to 5 * 104 A/cm2 at 4.2 K in 1 T in a MgB2/Fe tape with 7 filaments. For higher currents these multifilamentary wires and tapes quenched due to insufficient thermal stability of filaments. Both the processing routes and deformation methods were found to be important factors for fabricating multifilamentary MgB2 wires and tapes with high transport jc values.Comment: 13 pages, 7 figure

    Effect of shape, gluten, and mastication effort on in vitro starch digestion and the predicted glycemic index of pasta

    Get PDF
    Gluten-containing (GC) and gluten-free (GF) pasta consumption has been growing in recent years. The market offers a wide variety of pasta types, with differences in shape and formulation that influence the mastication process and, consequently, their nutritional behaviors (i.e. starch digestibility and glycemic response). This study investigated the effect of shape, gluten, and structural breakdown on in vitro starch digestibility and predicted the glycemic index (pGI) of GC and GF penne, spaghetti, and risoni. Pasta was cooked and minced to mimic short, intermediate, and long mastication efforts. Short mastication led to a higher number of big particles than intermediate and long mastications for all pasta samples, which was reflected in the different starch digestibility and pGI patterns. Multivariate analysis of variance showed that the three studied factors differently affected the in vitro starch digestion of pasta. Mastication effort, shape, and their interaction mainly affected the starch digestion rate and pGI. Gluten was the major factor in affecting the amount of digested starch. The results suggested that small shapes (i.e. risoni), the presence of gluten, and short mastication effort led to a lower pGI. The findings will be useful for the development of pasta products tailored to fulfill the needs of specific consumers following a rational food design approach

    High power rechargeable magnesium/iodine battery chemistry

    Full text link
    © The Author(s) 2017. Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg2+ to form a soluble intermediate and then an insoluble final product magnesium iodide. The liquid-solid two-phase reaction pathway circumvents solid-state Mg2+ diffusion and ensures a large interfacial reaction area, leading to fast reaction kinetics and high reaction reversibility. As a result, the rechargeable magnesium/iodine battery shows a better rate capability (180 mAh g-1 at 0.5 C and 140 mAh g-1 at 1 C) and a higher energy density (∼400 Wh kg-1) than all other reported rechargeable magnesium batteries using intercalation cathodes. This study demonstrates that the liquid-solid two-phase reaction mechanism is promising in addressing the kinetic limitation of rechargeable magnesium batteries

    Investigating properties of heavy and superheavy atomic systems with p3p^{3} configurations

    Full text link
    We have investigated energies and spectroscopic properties such as lifetimes, gJg_J factors, and hyperfine structure constants of the neutral atoms P through Mc belonging to Group-15, singly ionized atoms S+^+ through Lv+^+ of Group-16 and doubly ionized atoms Cl2+^{2+} through Ts2+^{2+} of Group-17 of the periodic table. These elements have np3np^{3} configurations with n=37n=3-7, which are highly open-shell and expected to exhibit strong electron correlation effects. We have used four-component Dirac-Coulomb Hamiltonian along with Gaunt term and a relativistic effective core potential through the relativistic multi-reference configuration interaction method to perform the calculations with sufficient accuracy and compare the results with the available literature data. These comparisons suggest that our predicted values, for which experimental data are not available, are reliable enough to be useful for future applications.Comment: 19 pages,12 table

    Anatomic Insights into Disrupted Small-World Networks in Pediatric Posttraumatic Stress Disorder.

    Get PDF
    Purpose To use diffusion-tensor (DT) imaging and graph theory approaches to explore the brain structural connectome in pediatric posttraumatic stress disorder (PTSD). Materials and Methods This study was approved by the relevant research ethics committee, and all participants’ parents or guardians provided informed consent. Twenty-four pediatric patients with PTSD and 23 control subjects exposed to trauma but without PTSD were recruited after the 2008 Sichuan earthquake. The structural connectome was constructed by using DT imaging tractography and thresholding the mean fractional anisotropy of 90 brain regions to yield 90 × 90 partial correlation matrixes. Graph theory analysis was used to examine the group-specific topologic properties, and nonparametric permutation tests were used for group comparisons of topologic metrics. Results Both groups exhibited small-world topology. However, patients with PTSD showed an increase in the characteristic path length (P = .0248) and decreases in local efficiency (P = .0498) and global efficiency (P = .0274). Furthermore, patients with PTSD showed reduced nodal centralities, mainly in the default mode, salience, central executive, and visual regions (P < .05, corrected for false-discovery rate). The Clinician-Administered PTSD Scale score was negatively correlated with the nodal efficiency of the left superior parietal gyrus (r = −0.446, P = .043). Conclusion The structural connectome showed a shift toward “regularization,” providing a structural basis for functional alterations of pediatric PTSD. These abnormalities suggest that PTSD can be understood by examining the dysfunction of large-scale spatially distributed neural networks

    On the sample size dependence of the critical current density in MgB2_2 superconductors

    Get PDF
    Sample size dependent critical current density has been observed in magnesium diboride superconductors. At high fields, larger samples provide higher critical current densities, while at low fields, larger samples give rise to lower critical current densities. The explanation for this surprising result is proposed in this study based on the electric field generated in the superconductors. The dependence of the current density on the sample size has been derived as a power law jR1/nj\propto R^{1/n} (nn is the nn factor characterizing EjE-j curve E=Ec(j/jc)nE=E_c(j/j_c)^n). This dependence provides one with a new method to derive the nn factor and can also be used to determine the dependence of the activation energy on the current density.Comment: Revtex, 4 pages, 5 figure
    corecore