17 research outputs found
Liver Engraftment and Repopulation by In Vitro Expanded Adult Derived Human Liver Stem Cells in a Child with Ornithine Carbamoyltransferase Deficiency
A 3-year-old girl suffering from ornithine carbamoyltransferase (OTC) deficiency was poorly equilibrated under conventional diet and scavenger treatment. Following unsuccessful cryopreserved hepatocyte transplantation, she received two infusions of Adult Derived Human Liver Stem/Progenitor Cells (ADHLSCs) expanded in vitro under GMP settings, the quantity being equivalent to 0.75% of her calculated liver mass. Using FISH immunostaining for the Y chromosome, the initial biopsy did not detect any male nuclei in the recipient liver. Two liver biopsies taken 100 days after ADHLSC transplantation showed 3% and 5% of male donor cells in the recipient liver, thus suggesting repopulation by donor cells. Although limited follow-up did not allow us to draw conclusions on long-term improvement, these results provide a promising proof of concept that this therapy is feasible in an OTC patient
Treating inborn errors of liver metabolism with stem cells: current clinical development
Abstract Advanced therapies including stem cells are currently a major biotechnological development. Adult liver stem cells can differentiate into hepatocyte like cells and be infused in the recipientâs liver to bring a missing metabolic function. These cells can be produced in large quantities in vitro. Allogeneic stem cells are required to treat genetic diseases, and this approach allows to use one single source of tissue to treat different diseases and many recipients. Mesenchymal stem cells can in addition play an immunomodulatory and anti-inflammatory role and possibly prevent the accumulation of fibrous tissue in the liver. From a regulatory point of view, stem cells are considered as medicinal products, and must undergo a pharmaceutical development that goes beyond the research and proof-of-concept phases. Here, we review the track followed from the first hepatocyte transplantation in 2000 to the next generation product issued from stem cell technology, and the start of EMA approved clinical trials to evaluate the safety and potency of liver stem cells for the treatment of inborn errors of the liver metabolism
Instant Blood-Mediated Inflammatory Reaction in Hepatocyte Transplantation: Current Status and Future Perspectives
Hepatocyte transplantation (HT) is emerging as a promising alternative to orthotopic liver transplantation (OLT) in patients with certain liver-based metabolic disease and acute liver failure. Hepatocytes are generally infused into the portal venous system, from which they migrate into the liver cell plates of the native organ. One of the major hurdles to the sustained success of this therapy is early cell loss, with up to 70% of hepatocytes lost immediately following infusion. This is largely thought to be due to the instant blood-mediated inflammatory reaction (IBMIR), resulting in the activation of complement and coagulation pathways. Transplanted hepatocytesproduce and release tissue factor (TF), which activates the coagulation pathway, leading to the formation of thrombin and fibrin clots. Thrombin can further activate a number of complement proteins, leading to the activation of the membrane attack complex (MAC) and subsequent hepatocyte cell death. Inflammatory cells including granulocytes, monocytes, Kupffer cells, and natural killer (NK) cells have been shown to cluster around transplanted hepatocytes, leading to their rapid clearance shortly after transplantation. Current researchaims to improve cell engraftment and prevent early cell loss. This has been proven successful in vitro using pharmacological interventions such as melagatran, low-molecular-weight dextran sulphate, and N-acetylcysteine(NAC). Effective inhibition of IBMIR would significantly improve hepatocyte engraftment, proliferation, and function, providing successful treatment for patients with liver-based metabolic diseases
Therapeutic hepatocyte transplant for inherited metabolic disorders: functional considerations, recent outcomes and future prospects
The applications, outcomes and future strategies of hepatocyte transplantation (HTx) as a corrective intervention for inherited metabolic disease (IMD) are described. An overview of HTx in IMDs, as well as preclinical evaluations in rodent and other mammalian models, is summarized. Current treatments for IMDs are highlighted, along with short- and long-term outcomes and the potential for HTx to supplement or supplant these treatments. Finally, the advantages and disadvantages of HTx are presented, highlighted by long-term challenges with interorgan engraftment and expansion of transplanted cells, in addition to the future prospects of stem cell transplants. At present, the utility of HTx is represented by the potential to bridge patients with life-threatening liver disease to organ transplantation, especially as an adjuvant intervention where severe organ shortages continue to pose challenges