1,310 research outputs found
Atomically flat interface between a single-terminated LaAlO3 substrate and SrTiO3 thin film is insulating
The surface termination of (100)-oriented LaAlO3 (LAO) single crystals was
examined by atomic force microscopy and optimized to produce a
single-terminated atomically flat surface by annealing. Then the atomically
flat STO film was achieved on a single-terminated LAO substrate, which is
expected to be similar to the n-type interface of two-dimensional electron gas
(2DEG), i.e., (LaO)-(TiO2). Particularly, that can serve as a mirror structure
for the typical 2DEG heterostructure to further clarify the origin of 2DEG.
This newly developed interface was determined to be highly insulating.
Additionally, this study demonstrates an approach to achieve atomically flat
film growth based on LAO substrates.Comment: 4 pages, 3 figure
Bridgeness: A Local Index on Edge Significance in Maintaining Global Connectivity
Edges in a network can be divided into two kinds according to their different
roles: some enhance the locality like the ones inside a cluster while others
contribute to the global connectivity like the ones connecting two clusters. A
recent study by Onnela et al uncovered the weak ties effects in mobile
communication. In this article, we provide complementary results on document
networks, that is, the edges connecting less similar nodes in content are more
significant in maintaining the global connectivity. We propose an index named
bridgeness to quantify the edge significance in maintaining connectivity, which
only depends on local information of network topology. We compare the
bridgeness with content similarity and some other structural indices according
to an edge percolation process. Experimental results on document networks show
that the bridgeness outperforms content similarity in characterizing the edge
significance. Furthermore, extensive numerical results on disparate networks
indicate that the bridgeness is also better than some well-known indices on
edge significance, including the Jaccard coefficient, degree product and
betweenness centrality.Comment: 10 pages, 4 figures, 1 tabl
Nonorthogonal decoy-state Quantum Key Distribution
In practical quantum key distribution (QKD), weak coherent states as the
photon sources have a limit in secure key rate and transmission distance
because of the existence of multiphoton pulses and heavy loss in transmission
line. Decoy states method and nonorthogonal encoding protocol are two important
weapons to combat these effects. Here, we combine these two methods and propose
a efficient method that can substantially improve the performance of QKD. We
find a 79 km increase in transmission distance over the prior record using
decoy states method.Comment: 4 pages, 1 figure; Revtex4, submitted to PR
Magnetic-field induced resistivity minimum with in-plane linear magnetoresistance of the Fermi liquid in SrTiO3-x single crystals
We report novel magnetotransport properties of the low temperature Fermi
liquid in SrTiO3-x single crystals. The classical limit dominates the
magnetotransport properties for a magnetic field perpendicular to the sample
surface and consequently a magnetic-field induced resistivity minimum emerges.
While for the field applied in plane and normal to the current, the linear
magnetoresistance (MR) starting from small fields (< 0.5 T) appears. The large
anisotropy in the transverse MRs reveals the strong surface interlayer
scattering due to the large gradient of oxygen vacancy concentration from the
surface to the interior of SrTiO3-x single crystals. Moreover, the linear MR in
our case was likely due to the inhomogeneity of oxygen vacancies and oxygen
vacancy clusters, which could provide experimental evidences for the unusual
quantum linear MR proposed by Abrikosov [A. A. Abrikosov, Phys. Rev. B 58, 2788
(1998)].Comment: 5 pages, 4 figure
Carrier freeze-out induced metal-insulator transition in oxygen deficient SrTiO3 films
We report the optical, electrical transport, and magnetotransport properties
of high quality oxygen deficient SrTiO3 (STO) single crystal film fabricated by
pulsed laser deposition and reduced in the vacuum chamber. The oxygen vacancy
distribution in the thin film is expected to be uniform. By comparing the
electrical properties with oxygen deficient bulk STO, it was found that the
oxygen vacancies in bulk STO is far from uniform over the whole material. The
metal-insulator transition (MIT) observed in the oxygen deficient STO film was
found to be induced by the carrier freeze-out effect. The low temperature
frozen state can be re-excited by an electric field, Joule heating, and
surprisingly also a large magnetic field.Comment: 5 pages, 5 figure
Metallic state in La-doped YBaCuO thin films with -type charge carriers
We report hole and electron doping in La-doped YBaCuO(YBCO) thin
films synthesized by pulsed laser deposition technique and subsequent
\emph{in-situ} postannealing in oxygen ambient and vaccum. The -type samples
show a metallic behavior below the Mott limit and a high carrier density of
10 cm at room temperature (\emph{T}) at the
optimally reduced condition. The in-plane resistivity () of the
-type samples exhibits a quadratic \emph{T} dependence in the
moderate-\emph{T} range and shows an anomaly at a relatively higher \emph{T}
probably related to pseudogap formation analogous to underdoped
NdCeCuO (NCCO). Furthermore, (T), \emph{T} and
\emph{T} with minimum resistivity (\emph{T}) were investigated in both
- and -side. The present results reveal the - asymmetry (symmetry)
within the metallic-state region in an underdoped cuprate and suggest the
potential toward ambipolar superconductivity in a single YBCO system.Comment: 4 pages, 5 figure
-to-Glueball form factor and Glueball production in decays
We investigate transition form factors of meson decays into a scalar
glueball in the light-cone formalism. Compared with form factors of to
ordinary scalar mesons, the -to-glueball form factors have the same power in
the expansion of . Taking into account the leading twist light-cone
distribution amplitude, we find that they are numerically smaller than those
form factors of to ordinary scalar mesons. Semileptonic ,
and decays are subsequently investigated. We
also analyze the production rates of scalar mesons in semileptonic decays
in the presence of mixing between scalar and glueball states. The
glueball production in meson decays is also investigated and the LHCb
experiment may discover this channel. The sizable branching fraction in , or could be a clear signal for a scalar glueball
state.Comment: 17 pages, 3 figure, revtex
- …